Electronic Chaotic Oscillator Realization with Potential Uses in Communication Systems

Author(s):  
Benjamin K. Rhea ◽  
F. T. Werner ◽  
R. C. Harrison ◽  
A. N. Beal ◽  
R. N. Dean

Chaotic systems have some unique properties that can be taken advantage of in some practical systems. These systems have characteristics such as long-term aperiodicity, continuous power spectral density, topological mixing, and sensitivity to initial conditions, all while still having a clearly defined deterministic structure. The property of continuous power spectral density is of particular interest in spread spectrum communication applications. This work looks to maintain these complex properties in a practical custom electronic realization through careful layout and device selection. Included are simulation results demonstrating the system's sensitivity to initial conditions and topological mixing. In addition to this, the electronic simulation maintains a continuous spectral power density up the fundamental frequency of the oscillator. These simulation results are used design the chaotic oscillator in a hardware demonstration. The hardware results exhibit similar dynamics to the original motivation system. Presented here is a relatively simple electronic implementation that closely maintains the complex properties of an ideal chaotic differential equation.

2016 ◽  
Vol 2016 ◽  
pp. 1-11
Author(s):  
Jan Litvik ◽  
Michal Kuba ◽  
Daniel Benedikovic ◽  
Jozef Dubovan ◽  
Milan Dado

Laser spectral properties are essential to evaluate the performance of optical communication systems. In general, the power spectral density of the phase noise has a crucial impact on spectral properties of the unmodulated laser signal. Here the white Gaussian noise and1/f-noise are taken into the consideration. By utilizing the time-dependent realizations of the instantaneous optical power and the phase simultaneously, it is possible to estimate the power spectral density or alternatively the power spectrum of an unmodulated laser signal shifted to the baseband and thus estimate the laser linewidth. In this work, we report on the theoretical approach to analyse unmodulated real-valued high-frequency stationary random passband signal of laser, followed by presenting the numerical model of the distributed feedback laser to emulate the time-dependent optical power and the instantaneous phase, as two important time domain laser attributes. The laser model is based on numerical solving the rate equations using fourth-order Runge-Kutta method. This way, we show the direct estimation of the power spectral density and the laser linewidth, when time-dependent laser characteristics are known.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
F. Setoudeh ◽  
A. Khaki Sedigh ◽  
M. Dousti

A chaotic oscillator based on the memristor is analyzed from a chaos theory viewpoint. Sensitivity to initial conditions is studied by considering a nonlinear model of the system, and also a new chaos analysis methodology based on the energy distribution is presented using the Discrete Wavelet Transform (DWT). Then, using Advance Design System (ADS) software, implementation of chaotic oscillator based on the memristor is considered. Simulation results are provided to show the main points of the paper.


2009 ◽  
Vol 2 (1) ◽  
pp. 40-47
Author(s):  
Montasser Tahat ◽  
Hussien Al-Wedyan ◽  
Kudret Demirli ◽  
Saad Mutasher

Author(s):  
Benjamin Yen ◽  
Yusuke Hioka

Abstract A method to locate sound sources using an audio recording system mounted on an unmanned aerial vehicle (UAV) is proposed. The method introduces extension algorithms to apply on top of a baseline approach, which performs localisation by estimating the peak signal-to-noise ratio (SNR) response in the time-frequency and angular spectra with the time difference of arrival information. The proposed extensions include a noise reduction and a post-processing algorithm to address the challenges in a UAV setting. The noise reduction algorithm reduces influences of UAV rotor noise on localisation performance, by scaling the SNR response using power spectral density of the UAV rotor noise, estimated using a denoising autoencoder. For the source tracking problem, an angular spectral range restricted peak search and link post-processing algorithm is also proposed to filter out incorrect location estimates along the localisation path. Experimental results show the proposed extensions yielded improvements in locating the target sound source correctly, with a 0.0064–0.175 decrease in mean haversine distance error across various UAV operating scenarios. The proposed method also shows a reduction in unexpected location estimations, with a 0.0037–0.185 decrease in the 0.75 quartile haversine distance error.


Sign in / Sign up

Export Citation Format

Share Document