scholarly journals A new brain organoid model to study Parkinson’s Disease

2021 ◽  
Vol 4 (s1) ◽  
Author(s):  
Silvia Bolognin ◽  
Lisa M. Smits ◽  
Sarah L. Nickels ◽  
Stefano Magni ◽  
Paul Antony ◽  
...  

Human midbrain organoid models represent a new tool to study the underlaying etiology of Parkinson’s disease in physiological conditions.

2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Francesca Longhena ◽  
Gaia Faustini ◽  
Cristina Missale ◽  
Marina Pizzi ◽  
PierFranco Spano ◽  
...  

Synaptopathies are diseases with synapse defects as shared pathogenic features, encompassing neurodegenerative disorders such as Parkinson’s disease (PD). In sporadic PD, the most common age-related neurodegenerative movement disorder, nigrostriatal dopaminergic deficits are responsible for the onset of motor symptoms that have been related toα-synuclein deposition at synaptic sites. Indeed,α-synuclein accumulation can impair synaptic dopamine release and induces the death of nigrostriatal neurons. While in physiological conditions the protein can interact with and modulate synaptic vesicle proteins and membranes, numerous experimental evidences have confirmed that its pathological aggregation can compromise correct neuronal functioning. In addition, recent findings indicate thatα-synuclein pathology spreads into the brain and can affect the peripheral autonomic and somatic nervous system. Indeed, monomeric, oligomeric, and fibrillaryα-synuclein can move from cell to cell and can trigger the aggregation of the endogenous protein in recipient neurons. This novel “prion-like” behavior could further contribute to synaptic failure in PD and other synucleinopathies. This review describes the major findings supporting the occurrence ofα-synuclein pathology propagation in PD and discusses how this phenomenon could induce or contribute to synaptic injury and degeneration.


2018 ◽  
Author(s):  
Juliette J. Lee ◽  
Alvaro Sanchez-Martinez ◽  
Aitor Martinez Zarate ◽  
Cristiane Benincá ◽  
Ugo Mayor ◽  
...  

AbstractParkinson’s disease factors, PINK1 and parkin, are strongly implicated in stress-induced mitophagy in vitro, but little is known about their impact on basal mitophagy in vivo. We generated transgenic Drosophila expressing fluorescent mitophagy reporters to evaluate the impact of Pink1/parkin mutations on basal mitophagy under physiological conditions. We find that mitophagy is readily detectable and abundant in many tissues including Parkinson’s disease relevant dopaminergic neurons. However, we did not detect mitolysosomes in flight muscle. Surprisingly, in Pink1 or parkin null flies we did not observe any substantial impact on basal mitophagy. As these flies exhibit locomotor defects and dopaminergic neuron loss, our findings raise questions about current assumptions of the pathogenic mechanism associated with the PINK1/Parkin pathway. Our findings provide evidence that Pink1 and parkin are not essential for bulk basal mitophagy in Drosophila. They also emphasize that mechanisms underpinning basal mitophagy remain largely obscure.SummaryPINK1/parkin are key mediators of stress-induced mitophagy in vitro but their impact on basal mitophagy in vivo is unclear. Novel Drosophila reporters lines reveal abundant mitophagy in many tissues including dopaminergic neurons but is unaffected by loss of PINK1/parkin.


2018 ◽  
Vol 217 (5) ◽  
pp. 1613-1622 ◽  
Author(s):  
Juliette J. Lee ◽  
Alvaro Sanchez-Martinez ◽  
Aitor Martinez Zarate ◽  
Cristiane Benincá ◽  
Ugo Mayor ◽  
...  

The Parkinson’s disease factors PINK1 and parkin are strongly implicated in stress-induced mitophagy in vitro, but little is known about their impact on basal mitophagy in vivo. We generated transgenic Drosophila melanogaster expressing fluorescent mitophagy reporters to evaluate the impact of Pink1/parkin mutations on basal mitophagy under physiological conditions. We find that mitophagy is readily detectable and abundant in many tissues, including Parkinson’s disease–relevant dopaminergic neurons. However, we did not detect mitolysosomes in flight muscle. Surprisingly, in Pink1 or parkin null flies, we did not observe any substantial impact on basal mitophagy. Because these flies exhibit locomotor defects and dopaminergic neuron loss, our findings raise questions about current assumptions of the pathogenic mechanism associated with the PINK1/parkin pathway. Our findings provide evidence that Pink1 and parkin are not essential for bulk basal mitophagy in Drosophila. They also emphasize that mechanisms underpinning basal mitophagy remain largely obscure.


2015 ◽  
Vol 10 (10) ◽  
pp. 1934578X1501001
Author(s):  
Azucena Gonzalez-Horta

Alpha-synuclein belongs to the class of intrinsically disordered proteins lacking a well-folded structure under physiological conditions. The conversion of alpha-synuclein from a soluble monomer to an insoluble fibril may underlie the neurodegeneration associated with Parkinson's disease (PD). Although the exact mechanism of alpha-synuclein toxicity is still unknown, it has been proposed that alpha-synuclein disturbs membrane structure, leading to increased membrane permeability and eventual cell death. This review highlights the significant role played by fluorescence techniques in unraveling the nature of interactions between alpha-synuclein and membranes and its implications in PD.


Author(s):  
Nuriye Yıldırım Gökay ◽  
Bülent Gündüz ◽  
Fatih Söke ◽  
Recep Karamert

Purpose The effects of neurological diseases on the auditory system have been a notable issue for investigators because the auditory pathway is closely associated with neural systems. The purposes of this study are to evaluate the efferent auditory system function and hearing quality in Parkinson's disease (PD) and to compare the findings with age-matched individuals without PD to present a perspective on aging. Method The study included 35 individuals with PD (mean age of 48.50 ± 8.00 years) and 35 normal-hearing peers (mean age of 49 ± 10 years). The following tests were administered for all participants: the first section of the Speech, Spatial and Qualities of Hearing Scale; pure-tone audiometry, speech audiometry, tympanometry, and acoustic reflexes; and distortion product otoacoustic emissions (DPOAEs) and contralateral suppression of DPOAEs. SPSS Version 25 was used for statistical analyses, and values of p < .05 were considered statistically significant. Results There were no statistically significant differences in the pure-tone audiometry thresholds and DPOAE responses between the individuals with PD and their normal-hearing peers ( p = .732). However, statistically significant differences were found between the groups in suppression levels of DPOAEs and hearing quality ( p < .05). In addition, a statistically significant and positive correlation was found between the amount of suppression at some frequencies and the Speech, Spatial and Qualities of Hearing Scale scores. Conclusions This study indicates that medial olivocochlear efferent system function and the hearing quality of individuals with PD were affected adversely due to the results of PD pathophysiology on the hearing system. For optimal intervention and follow-up, tasks related to hearing quality in daily life can also be added to therapies for PD.


2004 ◽  
Vol 9 (2) ◽  
pp. 10-13
Author(s):  
Linda Worrall ◽  
Jennifer Egan ◽  
Dorothea Oxenham ◽  
Felicity Stewart

2007 ◽  
Vol 12 (1) ◽  
pp. 2-11
Author(s):  
Lorraine Ramig ◽  
Cynthia Fox

Sign in / Sign up

Export Citation Format

Share Document