scholarly journals Localization of DNA methyltransferase-1 during oocyte differentiation, in vitro maturation and early embryonic development in cow

2009 ◽  
Vol 53 (4) ◽  
pp. 24 ◽  
Author(s):  
V. Lodde ◽  
S. C. Modina ◽  
F. Franciosi ◽  
E. Zuccari ◽  
I. Tessaro ◽  
...  
2009 ◽  
Vol 21 (1) ◽  
pp. 150
Author(s):  
P. Wilaiphan ◽  
F. Rings ◽  
M. Hoelker ◽  
E. Tholen ◽  
C. Phatsara ◽  
...  

DNA methyltransferase 1 (DNMT1) is believed to be involved in DNA methylation, which is a well-characterized epigenetic modulator shown to have essential functions in germ line and embryonic genome imprinting. This study was conducted to investigate the consequences of suppressing and inhibiting DNMT1 on the development, level of apoptosis, and expression of imprinted genes in pre-implantation bovine embryos. In vitro-produced zygotes were categorized into 4 groups; namely, those injected with Smartpool siRNA (SpsiRNA; Dharmacon Inc., Chicago, IL) (n = 800), 5aza-2′-deoxycytidine (5-AZA; Sigma, St. Louis, MO) (n = 864), nuclease-free water (n = 850), and uninjected control (n = 755). The mRNA expression data were generated using RT-PCR based on the relative standard curve method employing glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a normalizer. Apoptotic index (API) was calculated by dividing the number of apoptotic cells to total cell number. The proportion of 2-, 4-, 8-cell and 2-, 4-, 8-, and 16-cell embryos was assessed 48 and 72 h, respectively, post-micro injection (pmi), whereas blastocyst rate was assessed at Day 8 pmi. Data on embryonic development and the relative mRNA abundance were analyzed using ANOVA followed by a multiple pair-wise mean comparison using Tukey test. The proportion of 2-, 4-, and 8-cell embryos at 48 h pmi was not significant among treatment groups. However, the proportion of the 8-cell embryos was significantly lower (P < 0.05) in SpsiRNA (16.3 ± 4.5) and 5-AZA injected groups (17.7 ± 4.9) compared with water-injected (26.8 ± 2.9) and uninjected controls (30.7 ± 6.2). The lowest total blastocyst rate (P < 0.05) was observed in the 5-AZA treatment group (16.9 ± 4.9) compared with SpsiRNA (23.4 ± 2.1) and water-injected (24.1 ± 5.3) and uninjected controls (29.4 ± 2.1). Microinjection of SpsiRNA reduced the target mRNA by 80 and 50% in 8-cell and blastocyst stage embryos, respectively, compared with uninjected control, and the protein expression level was also reduced at 8-cell embryos as confirmed by Western blotting. Injection of 5-AZA had no significant effect on mRNA or protein expression. The greatest API (P < 0.05) was found in SpsiRNA (4.2 ± 2.0) and 5-AZA (4.1 ± 1.7) injected groups compared with water-injected (2.8 ± 2.1) and uninjected controls (2.9 ± 2.3). The relative expression study also showed that microinjection of SpsiRNA and 5-AZA increased the expression of IGF2 (by 67 and 55%), IGF2R (29 and 30%), and IGFPB-4 (22 and 24%), respectively, compared with uninjected control, without affecting the expression of both IGF2R and IGFPB-4. In conclusion, suppression of DNMT1 resulted in lower proportion of 8-cell embryos, reduced blastocyst rate, and increased apoptotic index, and affected the expression of some imprinted genes, demonstrating a critical role of this gene in bovine embryonic development.


2008 ◽  
Vol 20 (1) ◽  
pp. 82
Author(s):  
M. Paczkowski ◽  
C. Bidwell ◽  
D. Spurlock ◽  
J. Waddell ◽  
R. L. Krisher

The in vitro culture environment significantly impacts nuclear maturation, fertilization, embryonic development, and epigenetic competence; however, our knowledge of the effects of in vitro maturation on oocyte developmental competence, and specifically cytoplasmic maturation, is limited. The objective of this experiment was to identify alterations in the transcriptome of oocytes matured in vitro compared to those matured in vivo that correlate to developmental competence. Immature oocytes were collected from Day 26 and 7-8-week-old B6D2F1 mice 48 h post-pregnant mare serum gonadotropin (PMSG) administration and matured for 16 h in Gmat supplemented with 0.5 mm citric acid, 0.5 mm cysteamine, 100 ng mL–1 epidermal growth factor (EGF), 0.05% insulin-transferrin-selenium (ITS; v/v), 0.01% recombumin (v/v) and 2 mg mL–1 fetuin. In vivo-matured oocytes from females of the same ages were collected from the oviducts 62 h post-PMSG and 14 h post-hCG and mating to vasectomized males. In vivo- and in vitro-matured oocytes were identified visually by the presence of the first polar body. Mature oocytes were pooled into three groups of 150 oocytes per treatment and lysed; poly A+ RNA was extracted. Samples were processed through two cycles of linear amplification and hybridized to the GeneChip� Mouse Genome 430 2.0 Array (Affymetrix, Inc., Santa Clara, CA, USA), with three arrays per treatment. Microarray data were sorted and filtered to include genes that were classified as having two present calls per treatment. The data were then normalized to the chip median and analyzed using a one-way analysis of variance; the level of significance was calculated at P < 0.01. In total, 2.17% (482/22170) and 1.61% (358/22170) of genes were differentially expressed between in vitro- and in vivo-matured oocytes in Day 26 and 7–8-week-old mice, respectively. However, 72.82% (351/482) and 67.87% (243/358) of differentially expressed genes had increased abundance in the in vitro- and in vivo-matured oocytes, respectively. Transcripts involved in gene expression, cellular growth and proliferation, and cellular development were increased in in vivo-matured oocytes from both age groups compared to those matured in vitro. Cell death was one of the higher ranking functional groups increased in the 7–8-week-old in vitro-matured oocytes compared to the 7–8-week-old in vivo-matured oocytes. Specific genes altered by in vitro maturation conditions in Day 26 oocytes were DNA methyltransferase 1 (>7-fold increase in vivo), caspase 8 (>4-fold increase in vivo), and eukaryotic translation initiation factor 1B (>4-fold increase in vivo). DNA methyltransferase 1 and ubiquitin-conjugating enzyme E2T were significantly increased in in vivo-matured 7–8-week-old oocytes (>3-fold and >5-fold, respectively). These results indicate that gene expression is altered in oocytes matured in vitro compared to those matured in vivo. Based on the functional annotations of genes differentially expressed, dysregulation of gene expression in the oocyte resulting in altered DNA methylation and an up-regulation in cell death pathways are potential developmental mechanisms influenced by in vitro culture conditions that correlate to reduced embryonic developmental potential.


2008 ◽  
Vol 78 (Suppl_1) ◽  
pp. 162-163
Author(s):  
Changyong Choe ◽  
Sang-Rae Cho ◽  
Hyun-Jong Kim ◽  
Sun-Ho Choi ◽  
Sung-Hyum Yeon ◽  
...  

2011 ◽  
Vol 85 (Suppl_1) ◽  
pp. 434-434
Author(s):  
Islam M. Saadeldin ◽  
Ok Jae Koo ◽  
Jung Taek Kang ◽  
Dae Kee Kwon ◽  
Solji Park ◽  
...  

2017 ◽  
Vol 15 (1) ◽  
pp. 29-38
Author(s):  
Zubing Cao ◽  
Di Gao ◽  
Tengteng Xu ◽  
Xu Tong ◽  
Yiqing Wang ◽  
...  

2017 ◽  
Vol 14 (3) ◽  
pp. 3077-3081 ◽  
Author(s):  
Jian Bai ◽  
Xue Zhang ◽  
Bangqing Liu ◽  
Haiyong Wang ◽  
Zhenzong Du ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document