suppressor gene
Recently Published Documents


TOTAL DOCUMENTS

5003
(FIVE YEARS 716)

H-INDEX

158
(FIVE YEARS 10)

2023 ◽  
Vol 83 ◽  
Author(s):  
A. Al Hargan ◽  
M. H. Daghestani ◽  
A. H. Harrath

Abstract Colorectal cancer (CRC) is a disease with high incidence worldwide. As of 2018, it is the second leading cause of cancer deaths in the world. In Saudi Arabia, the incidence of this disease has been increasing in the younger population. Both genetic and lifestyle factors may have contributed to its increased incidence and pathogenesis. Monosodium glutamate (MSG) is a food flavor enhancer that can be found in many commercial foods, and it can sometimes be used as a substitute to table salt. MSG has been investigated for its possible genotoxicity, yielding controversial results. In the present study, the effect of MSG on cell viability and its effect on expression of APC, BECN1, and TP53 genes in SW620 and SW480 colon cancer cell lines were studied. TP53 is a tumor suppressor gene that functions in modifying DNA errors and/or inducing apoptosis of damaged cells, and both APC and BECN1 genes are involved in CRC and are of importance in cellular growth and metastasis. Cancer cell viability was analyzed using MTT assay, and the results showed a significant increase in the number of viable cells after 24 h of treatment with MSG with different concentrations (0.5, 1.0, 10, 50, and 100mM). Moreover, gene expression results showed a significant increase in the expression levels of APC and BECN1 under specified conditions in both cell lines; conversely, TP53 showed a significant decrease in expression in SW620 cells. Thus, it can be concluded that MSG possibly confers a pro-proliferative effect on CRC cells.


2022 ◽  
Author(s):  
Malvika Sudhakar ◽  
Raghunathan Rengaswamy ◽  
Karthik Raman

The progression of tumorigenesis starts with a few mutational and structural driver events in the cell. Various cohort-based computational tools exist to identify driver genes but require a large number of samples to produce reliable results. Many studies use different methods to identify driver mutations/genes from mutations that have no impact on tumour progression; however, a small fraction of patients show no mutational events in any known driver genes. Current unsupervised methods map somatic and expression data onto a network to identify the perturbation in the network. Our method is the first machine learning model to classify genes as tumour suppressor gene (TSG), oncogene (OG) or neutral, thus assigning the functional impact of the gene in the patient. In this study, we develop a multi-omic approach, PIVOT (Personalised Identification of driVer OGs and TSGs), to train on experimentally or computationally validated mutational and structural driver events. Given the lack of any gold standards for the identification of personalised driver genes, we label the data using four strategies and, based on classification metrics, show gene-based labelling strategies perform best. We build different models using SNV, RNA, and multi-omic features to be used based on the data available. Our models trained on multi-omic data improved predictions compared to mutation and expression data, achieving an accuracy >0.99 for BRCA, LUAD and COAD datasets. We show network and expression-based features contribute the most to PIVOT. Our predictions on BRCA, COAD and LUAD cancer types reveal commonly altered genes such as TP53, and PIK3CA, which are predicted drivers for multiple cancer types. Along with known driver genes, our models also identify new driver genes such as PRKCA, SOX9 and PSMD4. Our multi-omic model labels both CNV and mutations with a more considerable contribution by CNV alterations. While predicting labels for genes mutated in multiple samples, we also label rare driver events occurring in as few as one sample. We also identify genes with dual roles within the same cancer type. Overall, PIVOT labels personalised driver genes as TSGs and OGs and also identifies rare driver genes. PIVOT is available at https://github.com/RamanLab/PIVOT.


Author(s):  
Vera L. Hopfenmüller ◽  
Birgit Perner ◽  
Hanna Reuter ◽  
Thomas J. D. Bates ◽  
Andreas Große ◽  
...  

The Wilms tumor suppressor gene Wt1 encodes a zinc finger transcription factor, which is highly conserved among vertebrates. It is a key regulator of urogenital development and homeostasis but also plays a role in other organs including the spleen and the heart. More recently additional functions for Wt1 in the mammalian central nervous system have been described. In contrast to mammals, bony fish possess two paralogous Wt1 genes, namely wt1a and wt1b. By performing detailed in situ hybridization analyses during zebrafish development, we discovered new expression domains for wt1a in the dorsal hindbrain, the caudal medulla and the spinal cord. Marker analysis identified wt1a expressing cells of the dorsal hindbrain as ependymal cells of the choroid plexus in the myelencephalic ventricle. The choroid plexus acts as a blood-cerebrospinal fluid barrier and thus is crucial for brain homeostasis. By employing wt1a mutant larvae and a dye accumulation assay with fluorescent tracers we demonstrate that Wt1a is required for proper choroid plexus formation and function. Thus, Wt1a contributes to the barrier properties of the choroid plexus in zebrafish, revealing an unexpected role for Wt1 in the zebrafish brain.


Author(s):  
Christian Boni ◽  
Claudio Sorio

Members of the Protein Tyrosine Phosphatase (PTPs) family are associated with growth regulation and cancer development. Acting as natural counterpart of tyrosine kinases (TKs), mainly involved in crucial signaling pathways such as regulation of cell cycle, proliferation, invasion and angiogenesis, they represent key parts of complex physiological homeostatic mechanisms. Protein tyrosine phosphatase gamma (PTPRG) is classified as a R5 of the receptor type (RPTPs) subfamily and is broadly expressed in various isoforms in different tissues. PTPRG is considered a tumor-suppressor gene (TSG) mapped on chromosome 3p14-21, a region frequently subject to loss of heterozygosity in various tumors. However, reported mechanisms of PTPRG downregulation include missense mutations, ncRNA gene regulation and epigenetic silencing by hypermethylation of CpG sites on promoter region causing loss of function of the gene product. Inactive forms or total loss of PTPRG protein have been described in sporadic and Lynch syndrome colorectal cancer, nasopharyngeal carcinoma, ovarian, breast, and lung cancers, gastric cancer or diseases affecting the hematopoietic compartment as Lymphoma and Leukemia. Noteworthy, in Central Nervous System (CNS) PTPRZ/PTPRG appears to be crucial in maintaining glioblastoma cell-related neuronal stemness, carving out a pathological functional role also in this tissue. In this review, we will summarize the current knowledge on the role of PTPRG in various human cancers.


2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Katherine Cummings ◽  
Alice Watkins ◽  
Chris Jones ◽  
Renuka Dias ◽  
Alice Welham

Abstract Background Phosphatase and tensin homologue (PTEN) is a cancer suppressor gene. Constitutional mutations affecting this gene are associated with several conditions, collectively termed PTEN hamartoma tumour syndromes (PHTS). In addition to hamartomas, PTEN aberrations have been associated with a range of non-tumoural phenotypes such as macrocephaly, and research indicates possibly increased rates of developmental delay and autism spectrum disorder (ASD) for people with germline mutations affecting PTEN. Method A systematic review of literature reporting behavioural and psychological variables for people with constitutional PTEN mutations/PHTS was conducted using four databases. Following in-depth screening, 25 articles met the inclusion criteria and were used in the review. Fourteen papers reported the proportion of people with PTEN mutations/PTHS meeting criteria for or having characteristics of ASD and were thus used in a pooled prevalence meta-analysis. Results Meta-analysis using a random effects model estimated pooled prevalence of ASD characteristics at 25% (95% CI 16–33%), although this should be interpreted cautiously due to possible biases in existing literature. Intellectual disability and developmental delay (global, motor and speech and language) were also reported frequently. Emotional difficulties and impaired cognitive functioning in specific domains were noted but assessed/reported less frequently. Methods of assessment of psychological/behavioural factors varied widely (with retrospective examination of medical records common). Conclusions Existing research suggests approximately 25% of people with constitutional PTEN mutations may meet criteria for or have characteristics of ASD. Studies have also begun to establish a range of possible cognitive impairments in affected individuals, especially when ASD is also reported. However, further large-scale studies are needed to elucidate psychological/behavioural corollaries of this mutation, and how they may relate to physiological/physical characteristics.


Author(s):  
Shengliang Zhang ◽  
Lindsey Carlsen ◽  
Liz Hernandez Borrero ◽  
Attila A. Seyhan ◽  
Xiaobing Tian ◽  
...  

TP53 is a tumor suppressor gene that encodes a sequence-specific DNA-binding transcription factor activated by stressful stimuli and upregulates target genes involved in growth suppression, cell death, DNA repair, metabolism, among others. P53 is the most frequently mutated gene in tumors with mutations not only leading to loss-of-function (LOF), but also gain-of-function (GOF) which promotes tumor progression, and metastasis. The tumor-specific status of mutant p53 protein has suggested it is a promising target for cancer therapy. We summarize the current progress of targeting wild-type and mutant p53 for cancer therapy through biotherapeutic and biopharmaceutical methods for 1) boosting p53 activity in cancer, 2) p53-dependent and p53-independent strategies for targeting p53 pathway functional restoration in p53-mutated cancer, 3) targeting p53 in immunotherapy, and 4) combination therapies targeting p53, p53 checkpoints, or mutant p53 for cancer therapy.


Cancers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 219
Author(s):  
Chunwei W. Lai ◽  
Cindy Xie ◽  
Jean-Pierre Raufman ◽  
Guofeng Xie

The role played by the key tumor suppressor gene p53 and the implications of p53 mutations for the development and progression of neoplasia continue to expand. This review focuses on colorectal cancer and the regulators of p53 expression and activity identified over the past decade. These newly recognized regulatory mechanisms include (1) direct regulation of mouse double minute 2 homolog (MDM2), an E3 ubiquitin-protein ligase; (2) modulation of the MDM2-p53 interaction; (3) MDM2-independent p53 degradation; and (4) inhibition of p53 nuclear translocation. We positioned these regulatory mechanisms in the context of p53 missense mutations, which not only evade canonical p53 degradation machinery but also exhibit gain-of-function phenotypes that enhance tumor survival and metastasis. Lastly, we discuss current and potential therapeutic strategies directed against p53 mutant-bearing tumors.


Author(s):  
Fumitaka Obayashi ◽  
Atsuko Hamada ◽  
Sachiko Yamasaki ◽  
Taku Kanda ◽  
Shigeaki Toratani ◽  
...  

AbstractCowden syndrome (CS) is an autosomal dominant inherited disorder characterized by multiple hamartomas in various organs such as the mucosa, skin, and gastrointestinal tract. Patients with CS are at high risk for breast and thyroid cancers. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor gene that negatively regulates the AKT pathway, and PTEN mutations are known to be the major causes of this syndrome. However, the pathogenesis of this syndrome has not been clarified. Here, we present a case of a Japanese woman with multiple oral polyps, breast cancer, and thyroid cancer who was clinically diagnosed with CS. We obtained DNA and RNA samples from the patient’s peripheral blood mononuclear cells (PBMCs) and buccal mucosa tumor. Next-generation sequencing revealed novel germline mutations (c.1020delT and c.1026G > A) in exon 8 of PTEN. Sanger sequencing identified no PTEN transcript from the mutant allele. Furthermore, CS-specific induced pluripotent stem cells (CS-iPSCs) were established from PBMCs of the patient under feeder- and serum-free culture. Compared with healthy PBMCs and iPSCs, both of the CS-derived PBMCs and CS-iPSCs exhibited significantly reduced expression of the PTEN transcript. The transcriptional variant, PTENδ, was increased in CS-iPSCs, suggesting that it may be the cause of the disease.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Dan Li ◽  
Tao Yu ◽  
Junjie Hu ◽  
Jie Wu ◽  
Shi Feng ◽  
...  

Background. CYP39A1 is a poorly characterized metabolic enzyme that has been investigated in a few tumors. However, the role of CYP39A1 in hepatocellular carcinoma (HCC) has not yet been clarified. In this study, the expression and clinical significance of CYP39A1 in HCC were explored. Methods. CYP39A1 protein expression was detected in Akt/c-Met-induced HCC mice and 14 paired fresh HCC samples as well as another 159 HCC and matched noncancerous tissues. Meanwhile, the mRNA expression was analyzed by GEO and TCGA analysis and validated in 14 paired fresh HCC tissues. Furthermore, the relationships between CYP39A1 expression and clinicopathologic features as well as prognosis were analyzed. HCC cell growth changes were analyzed by cell viability assays after CYP39A1 overexpression and then validated after CYP39A1 knockout by DepMap database analysis. Results. CYP39A1 protein expression was lower expressed in HCC mouse models, and its mRNA and protein expression were also downregulated in HCC compared with noncancerous liver tissues. Higher CYP39A1 expression was associated with well differentiation. Moreover, survival analysis indicated that lower CYP39A1 expression was associated with poorer overall survival. In addition, HepG2 and SMMC-7721 cell viability were inhibited after CYP39A1 overexpression. Genome-wide CRISPR/Cas9 proliferation screening indicated that knockout of CYP39A1 could promote HCC cell growth. Likewise, p-NF-κB and Nrf2 were suppressed after CYP39A1 overexpression. It is worth mentioning that total bile acid, total bilirubin, and direct bilirubin were significantly increased in the patients with low CYP39A1 expression. Conclusions. Downregulation of CYP39A1 is associated with HCC carcinogenesis, tumor differentiation, and poor overall survival, suggesting that CYP39A1 may serve as a tumor suppressor gene and novel biomarker for HCC patients.


Sign in / Sign up

Export Citation Format

Share Document