scholarly journals The speed of reinfusion affects the vascular system during ozone major autohemotherapy

Ozone Therapy ◽  
2017 ◽  
Vol 1 (3) ◽  
pp. 56 ◽  
Author(s):  
Daniele Rimini ◽  
Filippo Molinari ◽  
William Liboni ◽  
Vincenzo Simonetti ◽  
Marianno Franzini

Ozone major autohemotherapy (O-MAHT) is a way of ozonetherapy administration consisting of drawing patient’s venous blood, mixing with oxygen/ozone, and reinfusing it into the vein. Some ozone therapists reported side effects during the O-MAHT, but the origin has not been described yet. We investigated the effect of blood drawing velocity during O-MAHT to see its effects on the vascular system and symptomatology. We administered O-MAHT to 11 subjects, and we interleaved fast and slow reinfusions. We monitored cerebral macrocirculation with transcranial Doppler (TCD) and tissue microcirculation with near-infrared spectroscopy (NIRS). Annoying symptoms appeared just during the fast reinfusion periods. NIRS and TCD parameters revealed vasoconstriction during fast reinfusion and improved metabolism during slow reinfusion. Overall, our investigation well discriminated fast from slow reinfusion velocity.

Biosensors ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 71
Author(s):  
Tomas Ysehak Abay ◽  
Kamran Shafqat ◽  
Panayiotis A. Kyriacou

Photoplethysmography (PPG) signals from the forehead can be used in pulse oximetry as they are less affected by vasoconstriction compared to fingers. However, the increase in venous blood caused by the positioning of the patient can deteriorate the signals and cause erroneous estimations of the arterial oxygen saturation. To date, there is no method to measure this venous presence under the PPG sensor. This study investigates the feasibility of using PPG signals from the forehead in an effort to estimate relative changes in haemoglobin concentrations that could reveal these posture-induced changes. Two identical reflectance PPG sensors were placed on two different positions on the forehead (above the eyebrow and on top of a large vein) in 16 healthy volunteers during a head-down tilt protocol. Relative changes in oxygenated ( Δ HbO 2 ), reduced ( Δ HHb) and total ( Δ tHb) haemoglobin were estimated from the PPG signals and the trends were compared with reference Near Infrared Spectroscopy (NIRS) measurements. Also, the signals from the two PPG sensors were analysed in order to reveal any difference due to the positioning of the sensor. Δ HbO 2 , Δ HHb and Δ tHb estimated from the forehead PPGs trended well with the same parameters from the reference NIRS. However, placing the sensor over a large vasculature reduces trending against NIRS, introduces biases as well as increases the variability of the changes in Δ HHb. Forehead PPG signals can be used to measure perfusion changes to reveal venous pooling induced by the positioning of the subject. Placing the sensor above the eyebrow and away from large vasculature avoids biases and large variability in the measurements.


Sign in / Sign up

Export Citation Format

Share Document