scholarly journals Locomotor recovery after spinal cord injury: intimate dependence between axonal regeneration and re-connection

2022 ◽  
Vol 17 (3) ◽  
pp. 553
Author(s):  
HectorRamiro Quinta
2010 ◽  
Vol 286 (3) ◽  
pp. 1876-1883 ◽  
Author(s):  
Yuka Nakamura ◽  
Yuki Fujita ◽  
Masaki Ueno ◽  
Toshiyuki Takai ◽  
Toshihide Yamashita

2015 ◽  
Vol 26 (4) ◽  
Author(s):  
Marc Fakhoury

AbstractSpinal cord injury affects more than 2.5 million people worldwide and can lead to paraplegia and quadriplegia. Anatomical discontinuity in the spinal cord results in disruption of the impulse conduction that causes temporary or permanent changes in the cord’s normal functions. Although axonal regeneration is limited, damage to the spinal cord is often accompanied by spontaneous plasticity and axon regeneration that help improve sensory and motor skills. The recovery process depends mainly on synaptic plasticity in the preexisting circuits and on the formation of new pathways through collateral sprouting into neighboring denervated territories. However, spontaneous recovery after spinal cord injury can go on for several years, and the degree of recovery is very limited. Therefore, the development of new approaches that could accelerate the gain of motor function is of high priority to patients with damaged spinal cord. Although there are no fully restorative treatments for spinal injury, various rehabilitative approaches have been tested in animal models and have reached clinical trials. In this paper, a closer look will be given at the potential therapies that could facilitate axonal regeneration and improve locomotor recovery after injury to the spinal cord. This article highlights the application of several interventions including locomotor training, molecular and cellular treatments, and spinal cord stimulation in the field of rehabilitation research. Studies investigating therapeutic approaches in both animal models and individuals with injured spinal cords will be presented.


2009 ◽  
Vol 12 (9) ◽  
pp. 1106-1113 ◽  
Author(s):  
Laura Taylor Alto ◽  
Leif A Havton ◽  
James M Conner ◽  
Edmund R Hollis II ◽  
Armin Blesch ◽  
...  

2017 ◽  
Vol 117 (1) ◽  
pp. 215-229 ◽  
Author(s):  
Katelyn N. Benthall ◽  
Ryan A. Hough ◽  
Andrew D. McClellan

Following spinal cord injury (SCI) in the lamprey, there is virtually complete recovery of locomotion within a few weeks, but interestingly, axonal regeneration of reticulospinal (RS) neurons is mostly limited to short distances caudal to the injury site. To explain this situation, we hypothesize that descending propriospinal (PS) neurons relay descending drive from RS neurons to indirectly activate spinal central pattern generators (CPGs). In the present study, the contributions of PS neurons to locomotor recovery were tested in the lamprey following SCI. First, long RS neuron projections were interrupted by staggered spinal hemitransections on the right side at 10% body length (BL; normalized from the tip of the oral hood) and on the left side at 30% BL. For acute recovery conditions (≤1 wk) and before axonal regeneration, swimming muscle burst activity was relatively normal, but with some deficits in coordination. Second, lampreys received two spaced complete spinal transections, one at 10% BL and one at 30% BL, to interrupt long-axon RS neuron projections. At short recovery times (3–5 wk), RS and PS neurons will have regenerated their axons for short distances and potentially established a polysynaptic descending command pathway. At these short recovery times, swimming muscle burst activity had only minor coordination deficits. A computer model that incorporated either of the two spinal lesions could mimic many aspects of the experimental data. In conclusion, descending PS neurons are a viable mechanism for indirect activation of spinal locomotor CPGs, although there can be coordination deficits of locomotor activity. NEW & NOTEWORTHY In the lamprey following spinal lesion-mediated interruption of long axonal projections of reticulospinal (RS) neurons, sensory stimulation still elicited relatively normal locomotor muscle burst activity, but with some coordination deficits. Computer models incorporating the spinal lesions could mimic many aspects of the experimental results. Thus, after disruption of long-axon projections from RS neurons in the lamprey, descending propriospinal (PS) neurons appear to be a viable compensatory mechanism for indirect activation of spinal locomotor networks.


2006 ◽  
Vol 23 (5) ◽  
pp. 660-673 ◽  
Author(s):  
Jason R. Potas ◽  
Yu Zheng ◽  
Charbel Moussa ◽  
Melinda Venn ◽  
Catherine A. Gorrie ◽  
...  

Author(s):  
Johannie Audet ◽  
Charly G. Lecomte

Tonic or phasic electrical epidural stimulation of the lumbosacral region of the spinal cord facilitates locomotion and standing in a variety of preclinical models with severe spinal cord injury. However, the mechanisms of epidural electrical stimulation that facilitate sensorimotor functions remain largely unknown. This review aims to address how epidural electrical stimulation interacts with spinal sensorimotor circuits and discusses the limitations that currently restrict the clinical implementation of this promising therapeutic approach.


2014 ◽  
Vol 1549 ◽  
pp. 1-10 ◽  
Author(s):  
H. Nait Taleb Ali ◽  
M.P. Morel ◽  
M. Doulazmi ◽  
S. Scotto-Lomassese ◽  
P. Gaspar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document