nerve grafts
Recently Published Documents


TOTAL DOCUMENTS

582
(FIVE YEARS 68)

H-INDEX

54
(FIVE YEARS 3)

2022 ◽  
Vol 17 (5) ◽  
pp. 1131
Author(s):  
Guo-Chen Zhu ◽  
Da-Jiang Xiao ◽  
Bi-Wen Zhu ◽  
Yan Xiao

Biomolecules ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 25
Author(s):  
Marta R. Casanova ◽  
Rui L. Reis ◽  
Albino Martins ◽  
Nuno M. Neves

Peripheral nerve injury still remains a major clinical challenge, since the available solutions lead to dysfunctional nerve regeneration. Even though autologous nerve grafts are the gold standard, tissue engineered nerve guidance grafts are valid alternatives. Nerve growth factor (NGF) is the most potent neurotrophic factor. The development of a nerve guidance graft able to locally potentiate the interaction between injured neurons and autologous NGF would be a safer and more effective alternative to grafts that just release NGF. Herein, a biofunctional electrospun fibrous mesh (eFM) was developed through the selective retrieval of NGF from rat blood plasma. The neurite outgrowth induced by the eFM-NGF systems was assessed by culturing rat pheochromocytoma (PC12) cells for 7 days, without medium supplementation. The biological results showed that this NGF delivery system stimulates neuronal differentiation, enhancing the neurite growth more than the control condition.


2021 ◽  
Vol 149 (1) ◽  
pp. 163-167
Author(s):  
Gilles Claro ◽  
Nicole A. Zelenski ◽  
Thierry Balaguer ◽  
Benoit Chaput ◽  
Nicolas Isola ◽  
...  

2021 ◽  
Author(s):  
Yaqiong Zhu ◽  
Nan Peng ◽  
Jing Wang ◽  
Zhuang Jin ◽  
Lianhua Zhu ◽  
...  

Abstract Background: Developing biocompatible nerve conduits that accelerate peripheral nerve regeneration, lengthening and functional recovery remains a challenge. The combined application of nerve microtissues and platelet-rich plasma (PRP) provides abundant Schwann cells (SCs) and various natural growth factors and can compensate for the deficiency of SCs in the nerve bridge, as well as the limitations of applying a single type of growth factor. Multimodal ultrasound evaluation can provide additional information on the stiffness and microvascular flow perfusion of the tissue. This study was designed to investigate the effectiveness of a novel tissue-engineered nerve graft composed of an autogenous vein, nerve microtissues and PRP in reconstructing a 12-mm tibial nerve defect and to explore the value of multimodal ultrasound techniques in evaluating the prognosis of nerve repair. Methods: In vitro, nerve microtissue activity was first investigated, and the effects on SC proliferation, migration, factor secretion, and axonal regeneration of dorsal root ganglia (DRG) were evaluated by coculture with nerve microtissues and PRP. In vivo, seventy-five rabbits were equally and randomly divided into Hollow, PRP, Micro-T (Microtissues), Micro-T+PRP and Autograft groups. By analysing the neurological function, electrophysiological recovery, and the comparative results of multimodal ultrasound and histological evaluation, we investigated the effect of these new nerve grafts in repairing tibial nerve defects. Results: Our results showed that the combined application of nerve microtissues and PRP could significantly promote the proliferation, secretion and migration of SCs and the regeneration of axons in the early stage. The Micro-T+PRP group and Autograft groups exhibited the best nerve repair 12 weeks postoperatively. In addition, the changes in target tissue stiffness and microvascular perfusion on multimodal ultrasound (shear wave elastography; contrast-enhanced ultrasonography; Angio PlaneWave UltrasenSitive, AngioPLUS) were significantly correlated with the histological results, such as collagen area percentage and VEGF expression, respectively. Conclusion: Our novel tissue-engineered nerve graft shows excellent efficacy in repairing 12-mm defects of the tibial nerve in rabbits. Moreover, multimodal ultrasound may provide a clinical reference for prognosis by quantitatively evaluating the stiffness and microvescular flow of nerve grafts and targeted muscles.


Author(s):  
Si-Gyun Roh ◽  
Jae Young Chun ◽  
Nae-Ho Lee ◽  
Jin Yong Shin ◽  
Jong-Lim Kim

Injury of peripheral nerve may require reconstruction for motor and sensory function recovery. However, when the nerve defect is long, especially in the lower extremities, reconstruction with successful function recovery proved to be difficult. We documented a case of bilateral vascularized sural nerve graft repair of a large and long sciatic nerve defect following malignant tumor resection on posterior thigh. Although we were unable to achieve satisfactory outcomes in motor function recovery, we did accomplish some sensory function recovery.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0252250
Author(s):  
Berend O. Broeren ◽  
Liron S. Duraku ◽  
Caroline A. Hundepool ◽  
Erik T. Walbeehm ◽  
J. Michiel Zuidam ◽  
...  

Background Treatment of nerve injuries proves to be a worldwide clinical challenge. Vascularized nerve grafts are suggested to be a promising alternative for bridging a nerve gap to the current gold standard, an autologous non-vascularized nerve graft. However, there is no adequate clinical evidence for the beneficial effect of vascularized nerve grafts and they are still disputed in clinical practice. Objective To systematically review whether vascularized nerve grafts give a superior nerve recovery compared to non-vascularized nerve autografts regarding histological and electrophysiological outcomes in animal models. Material and methods PubMed and Embase were systematically searched. The inclusion criteria were as follows: 1) the study was an original full paper which presented unique data; 2) a clear comparison between a vascularized and a non-vascularized autologous nerve transfer was made; 3) the population study were animals of all genders and ages. A standardized mean difference and 95% confidence intervals for each comparison was calculated to estimate the overall effect. Subgroup analyses were conducted on graft length, species and time frames. Results Fourteen articles were included in this review and all were included in the meta-analyses. A vascularized nerve graft resulted in a significantly larger diameter, higher nerve conduction velocity and axonal count compared to an autologous non-vascularized nerve graft. However, during sensitivity analysis the effect on axonal count disappeared. No significant difference was observed in muscle weight. Conclusion Treating a nerve gap with a vascularized graft results in superior nerve recovery compared to non-vascularized nerve autografts in terms of axon count, diameter and nerve conduction velocity. No difference in muscle weight was seen. However, this conclusion needs to be taken with some caution due to the inherent limitations of this meta-analysis. We recommend future studies to be performed under conditions more closely resembling human circumstances and to use long nerve defects.


2021 ◽  
Author(s):  
Bengisu Topuz ◽  
Halil Murat Aydin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document