scholarly journals Lesion-induced changes of brevican expression in the perineuronal net of the superior vestibular nucleus

2022 ◽  
Vol 17 (3) ◽  
pp. 649
Author(s):  
Botond Gaal ◽  
Agnes Magyar ◽  
Eva Racz ◽  
Clara Matesz ◽  
Ervin Wolf ◽  
...  
1993 ◽  
Vol 69 (2) ◽  
pp. 642-645 ◽  
Author(s):  
Y. Zhang ◽  
A. M. Partsalis ◽  
S. M. Highstein

1. Properties of superior vestibular nucleus (SVN) neurons and their projection to the cerebellar flocculus were studied in alert squirrel monkeys by using chronic unit and eye movement recording and microstimulation techniques. Twenty-three cells were antidromically activated from the ipsilateral flocculus, and seventeen of these were also orthodromically activated from the ipsilateral VIIth nerve at monosynaptic latencies. Only 1 of these 23 units was also inhibited by flocculus stimulation. According to their response properties, 9 of the cells were pure vestibular, 2 were vestibular-pause, and 12 were position-vestibular cells. The mean eye position sensitivity of these position-vestibular cells was significantly lower than that of cells projecting to the oculomotor nucleus (OMN). No eye movement-only neurons were antidromically activated from the flocculus. No cells could be antidromically activated from both the oculomotor nucleus and the flocculus.


1990 ◽  
Vol 110 (1-2) ◽  
pp. 31-36 ◽  
Author(s):  
Thomas J. Ketterer ◽  
Michael J. Lyon ◽  
Richard R. Gacek

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
P. M. Dingess ◽  
J. H. Harkness ◽  
M. Slaker ◽  
Z. Zhang ◽  
S. S. Wulff ◽  
...  

A key factor in the development of obesity is the overconsumption of fatty foods, which, in addition to facilitating weight gain, alters neuronal structures within brain reward circuitry. Our previous work demonstrates that sustained consumption of a high-fat diet (HFD) attenuates spine density in the prefrontal cortex (PFC). Whether HFD promotes structural adaptation among inhibitory cells of the PFC is presently unknown. One structure of interest is the perineuronal net (PNN), a specialized extracellular matrix surrounding, primarily, parvalbumin-containing GABAergic interneurons. PNNs contribute to synaptic stabilization, protect against oxidative stress, regulate the ionic microenvironment within cells, and modulate regional excitatory output. To examine diet-induced changes in PNNs, we maintained rats on one of three dietary conditions for 21 days: ad libitum chow, ad libitum 60% high fat (HF-AL), or limited-access calorically matched high fat (HF-CM), which produced no significant change in weight gain or adiposity with respect to chow controls. The PNN “number” and intensity were then quantified in the prelimbic (PL-PFC), infralimbic (IL-PFC), and ventral orbitofrontal cortex (OFC) using Wisteria floribunda agglutinin (WFA). Our results demonstrated that fat exposure, independent of weight gain, induced a robust decrease in the PNN intensity in the PL-PFC and OFC and a decrease in the PNN number in the OFC.


1995 ◽  
Vol 73 (6) ◽  
pp. 2279-2292 ◽  
Author(s):  
Y. Zhang ◽  
A. M. Partsalis ◽  
S. M. Highstein

1. Seven upward eye velocity flocculus target neurons (FTNs) and two flocculus projecting neurons (FPNs) were studied before and after ipsilateral flocculus inactivation by injection of muscimol in the alert squirrel monkey. An additional seven FTNs and seven FPNs recorded from the corresponding FTN and FPN areas were recorded after injection. Response properties of FTNs and FPNs were characterized by visual-vestibular interaction paradigms and were compared before and after flocculus inactivation. 2. In FTNs the mean firing rate increased within 2-5 min after muscimol injection in the flocculus and reached a plateau level in approximately 10-20 min. The average mean firing rate for seven FTNs increased from 117 to 174 spikes/s, a net increase of 57 spikes/s (49%). Accompanying the large increase of the mean firing rate, a spontaneous nystagmus in the darkness developed with the slow phase directed upward and contralateral. 3. The firing rate modulation during visual following of a sinusoidal optokinetic drum (0.5 Hz) decreased within 2-5 min after muscimol injection in the flocculus and reached a level of 0 in approximately 10-20 min for all FTNs. After that, some cells remained unmodulated for the period of recording; other cells gradually reversed their phase and developed a modulation out of phase with drum velocity. The depletion of the visual following eye velocity signal on superior vestibular nucleus (SVN) FTNs accompanied a small but consistent decrease of visual following eye velocity amplitude. The average maximum decrease of eye velocity was 26 +/- 9% (mean +/- SD). 4. After flocculus inactivation, even though the modulation response at 0.5 Hz during visual following was abolished, a slow-component eye velocity signal with the same on direction was revealed by a constant-velocity optokinetic stimulus. It is concluded that there are at least two kinds of eye velocity signals during the optokinetic response. These signals are combined at the FTNs and are subsequently relayed to the oculomotor neurons. The source of the fast component is the flocculus, and the source of the slow component is another, as yet unidentified brain structure. 5. The effect of flocculus inactivation on the modulation amplitude during the vestibuloocular reflex (VOR) in darkness was variable: two cells did not change, two cells decreased, and three cells increased their amplitude. The response phase tended to move toward a phase lead, but the change was small. The effect on VOR suppression was more prominent.(ABSTRACT TRUNCATED AT 400 WORDS)


PLoS ONE ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. e0211297 ◽  
Author(s):  
Jun Sato ◽  
Hideaki Inagaki ◽  
Mayu Kusui ◽  
Makoto Yokosuka ◽  
Takahiro Ushida

Sign in / Sign up

Export Citation Format

Share Document