perineuronal net
Recently Published Documents


TOTAL DOCUMENTS

144
(FIVE YEARS 73)

H-INDEX

29
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Cheryl Brandenburg ◽  
Gene J Blatt

Genetic variance in ASD is often associated with mechanisms that broadly fall into the category of neuroplasticity. Parvalbumin positive neurons and their surrounding perineuronal nets (PNNs) are important factors in critical period plasticity and have both been implicated in ASD. PNNs are found in high density within output structures of the cerebellum and basal ganglia, two regions that are densely connected to many other brain areas and have the potential to participate in the diverse array of symptoms present in an ASD diagnosis. The dentate nucleus and globus pallidus were therefore assessed for differences in PNN expression in human postmortem ASD brain tissue. While Purkinje cell loss is a consistent neuropathological finding in ASD, in this cohort, the Purkinje cell targets within the dentate nucleus did not show differences in number of cells with or without a PNN. However, the density of parvalbumin positive neurons with a PNN were significantly reduced in the globus pallidus internus and externus of ASD cases, which was not dependent on seizure status. It is unclear whether these alterations manifest during development or are a consequence of activity-dependent mechanisms that lead to altered network dynamics later in life.


2022 ◽  
Vol 17 (3) ◽  
pp. 649
Author(s):  
Botond Gaal ◽  
Agnes Magyar ◽  
Eva Racz ◽  
Clara Matesz ◽  
Ervin Wolf ◽  
...  

Biomolecules ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 10
Author(s):  
Khandakar Abu Hasan Al Mahmud ◽  
Fuad Hasan ◽  
Md Ishak Khan ◽  
Ashfaq Adnan

The perineuronal net (PNN) region of the brain’s extracellular matrix (ECM) surrounds the neural networks within the brain tissue. The PNN is a protective net-like structure regulating neuronal activity such as neurotransmission, charge balance, and action potential generation. Shock-induced damage of this essential component may lead to neuronal cell death and neurodegenerations. The shock generated during a vehicle accident, fall, or improvised device explosion may produce sufficient energy to damage the structure of the PNN. The goal is to investigate the mechanics of the PNN in reaction to shock loading and to understand the mechanical properties of different PNN components such as glycan, GAG, and protein. In this study, we evaluated the mechanical strength of PNN molecules and the interfacial strength between the PNN components. Afterward, we assessed the PNN molecules’ damage efficiency under various conditions such as shock speed, preexisting bubble, and boundary conditions. The secondary structure altercation of the protein molecules of the PNN was analyzed to evaluate damage intensity under varying shock speeds. At a higher shock speed, damage intensity is more elevated, and hyaluronan (glycan molecule) is most likely to break at the rigid junction. The primary structure of the protein molecules is least likely to fail. Instead, the molecules’ secondary bonds will be altered. Our study suggests that the number of hydrogen bonds during the shock wave propagation is reduced, which leads to the change in protein conformations and damage within the PNN structure. As such, we found a direct connection between shock wave intensity and PNN damage.


Author(s):  
Kojiro Nojima ◽  
Haruko Miyazaki ◽  
Tetsuya Hori ◽  
Lydia Vargova ◽  
Toshitaka Oohashi

The calyx of Held is a giant nerve terminal mediating high-frequency excitatory input to principal cells of the medial nucleus of the trapezoid body (MNTB). MNTB principal neurons are enwrapped by densely organized extracellular matrix structures, known as perineuronal nets (PNNs). Emerging evidence indicates the importance of PNNs in synaptic transmission at the calyx of Held. Previously, a unique differential expression of aggrecan and brevican has been reported at this calyceal synapse. However, the role of hyaluronan and proteoglycan binding link proteins (HAPLNs) in PNN formation and synaptic transmission at this synapse remains elusive. This study aimed to assess immunohistochemical evidence for the effect of HAPLN4 on differential PNN formation at the calyx of Held. Genetic deletion of Hapln4 exhibited a clear ectopic shift of brevican localization from the perisynaptic space between the calyx of Held terminals and principal neurons to the neuropil surrounding the whole calyx of Held terminals. In contrast, aggrecan expression showed a consistent localization at the surrounding neuropil, together with HAPLN1 and tenascin-R, in both gene knockout (KO) and wild-type (WT) mice. An in situ proximity ligation assay demonstrated the molecular association of brevican with HAPLN4 in WT and HAPLN1 in gene KO mice. Further elucidation of the roles of HAPLN4 may highlight the developmental and physiological importance of PNN formation in the calyx of Held.


2021 ◽  
Author(s):  
Aric F. Logsdon ◽  
Kendra L. Francis ◽  
Nicole E. Richardson ◽  
Shannon J. Hu ◽  
Chelsea L. Faber ◽  
...  

2021 ◽  
Vol 7 (35) ◽  
Author(s):  
Miguel A. Arreola ◽  
Neelakshi Soni ◽  
Joshua D. Crapser ◽  
Lindsay A. Hohsfield ◽  
Monica R. P. Elmore ◽  
...  

2021 ◽  
Author(s):  
Jane Morphett ◽  
◽  
Alexandra Whittaker ◽  
Amy Reichelt ◽  
Mark Hutchinson

Is the perineuronal net structure within emotional processing brain regions associated with changes in affective state? The objective of this scoping review is to bring together the literature on human and animal studies which have measured perineuronal net structure in brain regions associated with emotional processing (such as but not limited to amygdala, hippocampus and prefrontal cortex). Perineuronal nets are a specialised form of condensed extracellular matrix that enwrap and protect neurons (Suttkus et al., 2016), regulate synaptic plasticity (Celio and Blumcke, 1994) and ion homeostasis (Morawski et al., 2015). Perineuronal nets are dynamic structures that are influenced by external and internal environmental shifts – for example, increasing in intensity and number in response to stressors (Blanco and Conant, 2021) and pharmacological agents (Riga et al., 2017). This review’s objective is to generate a compilation of existing knowledge regarding the structural changes of perineuronal nets in experimental studies that manipulate affective state, including those that alter environmental stressors. The outcomes will inform future research directions by elucidating non-cellular central nervous system mechanisms that underpin positive and negative emotional states. These methods may also be targets for manipulation to manage conditions of depression or promote wellbeing. Population: human and animal Condition: affective state as determined through validated behavioural assessment methods or established biomarkers. This includes both positive and negative affective states. Context: PNN structure, measuringPNNs.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1235
Author(s):  
Jessica A. Burket ◽  
Jason D. Webb ◽  
Stephen I. Deutsch

Because of their abilities to catalyze generation of toxic free radical species, free concentrations of the redox reactive metals iron and copper are highly regulated. Importantly, desired neurobiological effects of these redox reactive metal cations occur within very narrow ranges of their local concentrations. For example, synaptic release of free copper acts locally to modulate NMDA receptor-mediated neurotransmission. Moreover, within the developing brain, iron is critical to hippocampal maturation and the differentiation of parvalbumin-expressing neurons, whose soma and dendrites are surrounded by perineuronal nets (PNNs). The PNNs are a specialized component of brain extracellular matrix, whose polyanionic character supports the fast-spiking electrophysiological properties of these parvalbumin-expressing GABAergic interneurons. In addition to binding cations and creation of the Donnan equilibrium that support the fast-spiking properties of this subset of interneurons, the complex architecture of PNNs also binds metal cations, which may serve a protective function against oxidative damage, especially of these fast-spiking neurons. Data suggest that pathological disturbance of the population of fast-spiking, parvalbumin-expressing GABAergic inhibitory interneurons occur in at least some clinical presentations, which leads to disruption of the synchronous oscillatory output of assemblies of pyramidal neurons. Increased expression of the GluN2A NMDA receptor subunit on parvalbumin-expressing interneurons is linked to functional maturation of both these neurons and the perineuronal nets that surround them. Disruption of GluN2A expression shows increased susceptibility to oxidative stress, reflected in redox dysregulation and delayed maturation of PNNs. This may be especially relevant to neurodevelopmental disorders, including autism spectrum disorder. Conceivably, binding of metal redox reactive cations by the perineuronal net helps to maintain safe local concentrations, and also serves as a reservoir buffering against second-to-second fluctuations in their concentrations outside of a narrow physiological range.


Sign in / Sign up

Export Citation Format

Share Document