scholarly journals Tracking Moving Objects based on Background Subtraction using Kalman Filter

Author(s):  
M. Soeleman ◽  
D. Raniasti ◽  
Karis W ◽  
Muljono Muljono ◽  
Muslih Muslih ◽  
...  
2011 ◽  
Vol 58-60 ◽  
pp. 2290-2295 ◽  
Author(s):  
Ruo Hong Huan ◽  
Xiao Mei Tang ◽  
Zhe Hu Wang ◽  
Qing Zhang Chen

A method of abnormal motion detection for intelligent video surveillance is presented, which includes object intrusion detection, object overlong stay detection and object overpopulation detection. Background subtraction algorithm is used to detect moving objects in video streams. Kalman filter is applied for object tracking. By the construction of relation matrix, the tracking process is divided into five statuses for prediction and estimation, which are object disappearing, object separating, new object appearing, object sheltering and object matching. The object parameters and predictive information in the next frame which is used to track moving objects is established by Kalman filter. Then, three types of abnormal motion detection are implemented. The relative position of alarm area or guard line with the rectangle boxes of the moving objects is used to detect whether the object is invading. The existing time of the moving objects in monitor area is counted to detect whether the object is staying too long. Moving objects in the monitor area are classified and counted to detect whether the objects are too much. Alarm will be triggered when abnormal motion detection as defined is detected in the monitor area.


Author(s):  
Jeevith S. H. ◽  
Lakshmikanth S.

Moving object detection and tracking (MODT) is the major challenging issue in computer vision, which plays a vital role in many applications like robotics, surveillance, navigation systems, militaries, environmental monitoring etc. There are several existing techniques, which has been used to detect and track the moving object in Surveillance system. Therefore it is necessary to develop new algorithm or modified algorithm which is robust to work in both day and night time. In this paper, modified BGS technique is proposed. The video is first converted to number of frames, then these frame are applied to modified background subtraction technique with adaptive threshold which gives detected object. Kalman filter technique is used for tracking the detected object. The experimental results shows this proposed method can efficiently and correctly detect and track the moving objects with less processing time which is compared with existing techniques.


2014 ◽  
Vol 533 ◽  
pp. 218-225 ◽  
Author(s):  
Rapee Krerngkamjornkit ◽  
Milan Simic

This paper describes computer vision algorithms for detection, identification, and tracking of moving objects in a video file. The problem of multiple object tracking can be divided into two parts; detecting moving objects in each frame and associating the detections corresponding to the same object over time. The detection of moving objects uses a background subtraction algorithm based on Gaussian mixture models. The motion of each track is estimated by a Kalman filter. The video tracking algorithm was successfully tested using the BIWI walking pedestrians datasets [. The experimental results show that system can operate in real time and successfully detect, track and identify multiple targets in the presence of partial occlusion.


2012 ◽  
Vol 239-240 ◽  
pp. 1000-1003
Author(s):  
Zhao Quan Cai ◽  
Hui Hu ◽  
Tao Xu ◽  
Wei Luo ◽  
Yi Cheng He

It is urgent to study how to effectively identify color of moving objects from the video in the information era. In this paper, we present the color identification methods for moving objects on fixed camera. One kind of the methods is background subtraction that recognizes the foreground objects by compare the difference of pixel luminance between the current image and the background image at the same coordinates. Another kind is based on the statistics of HSV color and color matching which makes the detection more similar to the color identification of the human beings. According to the experiment results, after the completion of the background modelling, our algorithm of background subtraction, statistics of the HSV color and the color matching have strong color recognition ability on the moving objects of video.


2017 ◽  
Vol 10 (19) ◽  
pp. 1-11 ◽  
Author(s):  
Archita Tah ◽  
Sudipta Roy ◽  
Prasenjit Das ◽  
Anirban Mitra ◽  
◽  
...  

2002 ◽  
Vol 16 (4) ◽  
pp. 427-435
Author(s):  
Dong-Kyu Kim ◽  
Sang-Bong Kim ◽  
Hak-Kyeong Kim

Author(s):  
Shefali Gandhi ◽  
Tushar V. Ratanpara

Video synopsis provides representation of the long surveillance video, while preserving the essential activities of the original video. The activity in the original video is covered into a shorter period by simultaneously displaying multiple activities, which originally occurred at different time segments. As activities are to be displayed in different time segments than original video, the process begins with extracting moving objects. Temporal median algorithm is used to model background and foreground objects are detected using background subtraction method. Each moving object is represented as a space-time activity tube in the video. The concept of genetic algorithm is used for optimized temporal shifting of activity tubes. The temporal arrangement of tubes which results in minimum collision and maintains chronological order of events is considered as the best solution. The time-lapse background video is generated next, which is used as background for the synopsis video. Finally, the activity tubes are stitched on the time-lapse background video using Poisson image editing.


Sign in / Sign up

Export Citation Format

Share Document