scholarly journals An Efficient Pest Classification In Smart Agriculture Using Transfer Learning

Author(s):  
Tuan Nguyen ◽  
Quoc-Tuan Vien ◽  
Harin Sellahewa
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhikui Chen ◽  
Xu Zhang ◽  
Shi Chen ◽  
Fangming Zhong

The introduction of deep transfer learning (DTL) further reduces the requirement of data and expert knowledge in various uses of applications, helping DNN-based models effectively reuse information. However, it often transfers all parameters from the source network that might be useful to the task. The redundant trainable parameters restrict DTL in low-computing-power devices and edge computing, while small effective networks with fewer parameters have difficulty transferring knowledge due to structural differences in design. For the challenge of how to transfer a simplified model from a complex network, in this paper, an algorithm is proposed to realize a sparse DTL, which only transfers and retains the most necessary structure to reduce the parameters of the final model. Sparse transfer hypothesis is introduced, in which a compressing strategy is designed to construct deep sparse networks that distill useful information in the auxiliary domain, improving the transfer efficiency. The proposed method is evaluated on representative datasets and applied for smart agriculture to train deep identification models that can effectively detect new pests using few data samples.


10.1596/31064 ◽  
2018 ◽  
Author(s):  
Chase Anthony Sova ◽  
Godefroy Grosjean ◽  
Tobias Baedeker ◽  
Tam Ninh Nguyen ◽  
Martin Wallner ◽  
...  
Keyword(s):  

2019 ◽  
Author(s):  
Qi Yuan ◽  
Alejandro Santana-Bonilla ◽  
Martijn Zwijnenburg ◽  
Kim Jelfs

<p>The chemical space for novel electronic donor-acceptor oligomers with targeted properties was explored using deep generative models and transfer learning. A General Recurrent Neural Network model was trained from the ChEMBL database to generate chemically valid SMILES strings. The parameters of the General Recurrent Neural Network were fine-tuned via transfer learning using the electronic donor-acceptor database from the Computational Material Repository to generate novel donor-acceptor oligomers. Six different transfer learning models were developed with different subsets of the donor-acceptor database as training sets. We concluded that electronic properties such as HOMO-LUMO gaps and dipole moments of the training sets can be learned using the SMILES representation with deep generative models, and that the chemical space of the training sets can be efficiently explored. This approach identified approximately 1700 new molecules that have promising electronic properties (HOMO-LUMO gap <2 eV and dipole moment <2 Debye), 6-times more than in the original database. Amongst the molecular transformations, the deep generative model has learned how to produce novel molecules by trading off between selected atomic substitutions (such as halogenation or methylation) and molecular features such as the spatial extension of the oligomer. The method can be extended as a plausible source of new chemical combinations to effectively explore the chemical space for targeted properties.</p>


2014 ◽  
Author(s):  
Hiroshi Kanayama ◽  
Youngja Park ◽  
Yuta Tsuboi ◽  
Dongmook Yi
Keyword(s):  

2020 ◽  
Author(s):  
Pathikkumar Patel ◽  
Bhargav Lad ◽  
Jinan Fiaidhi

During the last few years, RNN models have been extensively used and they have proven to be better for sequence and text data. RNNs have achieved state-of-the-art performance levels in several applications such as text classification, sequence to sequence modelling and time series forecasting. In this article we will review different Machine Learning and Deep Learning based approaches for text data and look at the results obtained from these methods. This work also explores the use of transfer learning in NLP and how it affects the performance of models on a specific application of sentiment analysis.


Sign in / Sign up

Export Citation Format

Share Document