scholarly journals SPECTRAL APPROXIMATIONS OF ATTRACTORS FOR CONVECTIVE CAHN-HILLIARD EQUATION IN TWO DIMENSIONS

2015 ◽  
Vol 52 (5) ◽  
pp. 1445-1465 ◽  
Author(s):  
XIAOPENG ZHAO
1997 ◽  
Vol 481 ◽  
Author(s):  
J. D. Zhang ◽  
D. Y. Li ◽  
L. Q. Chen

ABSTRACTThe morphology and its evolution of a single coherent precipitate was investigated using the Cahn-Hilliard equation and Khachaturyan's continuum elasticity theory for solid solutions. A cubic solid solution with negative elastic anisotropy and isotropic interfacial energy was considered. The lattice mismatch between the precipitate and the matrix was assumed to be purely dilatational and its compositional dependence obeys the Vegard's law. Both two- and three-dimensional systems were studied. The Cahn-Hilliard equation was numerically solved using a semi-implicit Fourier-spectral method. It was demonstrated that, with increasing elastic energy contribution, the equilibrium shape of a coherent particle gradually changes from a circle to a square in two dimensions, and from a sphere to a cube in three dimensions, and the composition profile becomes increasingly inhomogeneous within the precipitate with the minimum at the center of the particle, consistent with previous theoretical studies and experimental observations. It was also shown that, with sufficiently large elastic strain energy contribution, a coherent particle may split to four particles from a square, or eight particles from a sphere, during its evolution to equilibrium. For both two and three dimensions, the splitting starts by nucleating the matrix phase at the center of the particle.


Analysis ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Helmut Abels ◽  
Johannes Kampmann

AbstractWe rigorously prove the convergence of weak solutions to a model for lipid raft formation in cell membranes which was recently proposed in [H. Garcke, J. Kampmann, A. Rätz and M. Röger, A coupled surface-Cahn–Hilliard bulk-diffusion system modeling lipid raft formation in cell membranes, Math. Models Methods Appl. Sci. 26 2016, 6, 1149–1189] to weak (varifold) solutions of the corresponding sharp-interface problem for a suitable subsequence. In the system a Cahn–Hilliard type equation on the boundary of a domain is coupled to a diffusion equation inside the domain. The proof builds on techniques developed in [X. Chen, Global asymptotic limit of solutions of the Cahn–Hilliard equation, J. Differential Geom. 44 1996, 2, 262–311] for the corresponding result for the Cahn–Hilliard equation.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Xiaopeng Zhao

AbstractIn this paper, we study the long time behavior of solution for the initial-boundary value problem of convective Cahn–Hilliard equation in a 2D case. We show that the equation has a global attractor in $H^{4}(\Omega )$ H 4 ( Ω ) when the initial value belongs to $H^{1}(\Omega )$ H 1 ( Ω ) .


2021 ◽  
pp. 110409
Author(s):  
Gerasimos Ntoukas ◽  
Juan Manzanero ◽  
Gonzalo Rubio ◽  
Eusebio Valero ◽  
Esteban Ferrer

Sign in / Sign up

Export Citation Format

Share Document