spectral approximations
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 18)

H-INDEX

19
(FIVE YEARS 2)

Author(s):  
Vincent Coppé ◽  
Daan Huybrechs

Abstract The approximation of smooth functions with a spectral basis typically leads to rapidly decaying coefficients, where the rate of decay depends on the smoothness of the function and vice versa. The optimal number of degrees of freedom in the approximation can be determined with relative ease by truncating the coefficients once a threshold is reached. Recent approximation schemes based on redundant sets and frames extend the applicability of spectral approximations to functions defined on irregular geometries and to certain nonsmooth functions. However, due to their inherent redundancy, the expansion coefficients in frame approximations do not necessarily decay even for very smooth functions. In this paper, we highlight this lack of equivalence between smoothness and coefficient decay, and we explore approaches to determine an optimal number of degrees of freedom for such redundant approximations.


2020 ◽  
Vol 28 (03) ◽  
pp. 2050002
Author(s):  
Richard B. Evans

The asymptotic rate of convergence of the Legendre–Galerkin spectral approximation to an atmospheric acoustic eigenvalue problem is established, as the dimension of the approximating subspace approaches infinity. Convergence is in the [Formula: see text] Sobolev norm and is based on the existing theory [F. Chatelin, Spectral Approximations of Linear Operators (SIAM, 2011)]. The assumption is made that the eigenvalues are simple. Numerical results that help interpret the theory are presented. Eigenvalues corresponding to acoustic modes with smaller [Formula: see text] norms are especially accurately approximated, even with lower dimensioned basis sets of Legendre polynomials. The deficiencies in the potential applications of the theoretical results are noted in connection with the numerical examples.


2020 ◽  
Vol 18 (05) ◽  
pp. 715-770 ◽  
Author(s):  
Joost A. A. Opschoor ◽  
Philipp C. Petersen ◽  
Christoph Schwab

Approximation rate bounds for emulations of real-valued functions on intervals by deep neural networks (DNNs) are established. The approximation results are given for DNNs based on ReLU activation functions. The approximation error is measured with respect to Sobolev norms. It is shown that ReLU DNNs allow for essentially the same approximation rates as nonlinear, variable-order, free-knot (or so-called “[Formula: see text]-adaptive”) spline approximations and spectral approximations, for a wide range of Sobolev and Besov spaces. In particular, exponential convergence rates in terms of the DNN size for univariate, piecewise Gevrey functions with point singularities are established. Combined with recent results on ReLU DNN approximation of rational, oscillatory, and high-dimensional functions, this corroborates that continuous, piecewise affine ReLU DNNs afford algebraic and exponential convergence rate bounds which are comparable to “best in class” schemes for several important function classes of high and infinite smoothness. Using composition of DNNs, we also prove that radial-like functions obtained as compositions of the above with the Euclidean norm and, possibly, anisotropic affine changes of co-ordinates can be emulated at exponential rate in terms of the DNN size and depth without the curse of dimensionality.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Wenping Chen ◽  
Shujuan Lü ◽  
Hu Chen ◽  
Lihua Jiang

Abstract In this paper, we solve the variable-coefficient fractional diffusion-wave equation in a bounded domain by the Legendre spectral method. The time fractional derivative is in the Caputo sense of order $\gamma \in (1,2)$ γ ∈ ( 1 , 2 ) . We propose two fully discrete schemes based on finite difference in temporal and Legendre spectral approximations in spatial discretization. For the first scheme, we discretize the time fractional derivative directly by the $L_{1}$ L 1 approximation coupled with the Crank–Nicolson technique. For the second scheme, we transform the equation into an equivalent form with respect to the Riemann–Liouville fractional integral operator. We give a rigorous analysis of the stability and convergence of the two fully discrete schemes. Numerical examples are carried out to verify the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document