lattice mismatch
Recently Published Documents


TOTAL DOCUMENTS

1199
(FIVE YEARS 155)

H-INDEX

54
(FIVE YEARS 11)

2022 ◽  
Vol 106 ◽  
pp. 19-27
Author(s):  
Shicheng Li ◽  
Hongyan Liang ◽  
Chong Li ◽  
Yongchang Liu

Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 94
Author(s):  
Pepen Arifin ◽  
Heri Sutanto ◽  
Sugianto ◽  
Agus Subagio

We report the growth of non-polar GaN and AlGaN films on Si(111) substrates by plasma-assisted metal-organic chemical vapor deposition (PA-MOCVD). Low-temperature growth of GaN or AlN was used as a buffer layer to overcome the lattice mismatch and thermal expansion coefficient between GaN and Si(111) and GaN’s poor wetting on Si(111). As grown, the buffer layer is amorphous, and it crystalizes during annealing to the growth temperature and then serves as a template for the growth of GaN or AlGaN. We used scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD) characterization to investigate the influence of the buffer layer on crystal structure, orientation, and the morphology of GaN. We found that the GaN buffer layer is superior to the AlN buffer layer. The thickness of the GaN buffer layer played a critical role in the crystal quality and plane orientation and in reducing the cracks during the growth of GaN/Si(111) layers. The optimum GaN buffer layer thickness is around 50 nm, and by using the optimized GaN buffer layer, we investigated the growth of AlGaN with varying Al compositions. The morphology of the AlGaN films is flat and homogenous, with less than 1 nm surface roughness, and has preferred orientation in a-axis.


Author(s):  
Judy Z Wu ◽  
Victor Ogunjimi ◽  
Mary Ann Sebastian ◽  
Di Zhang ◽  
Jie Jian ◽  
...  

Abstract One-dimensional c-axis-aligned BaZrO3 (BZO) nanorods are regarded as strong one-dimensional artificial pinning centers (1D-APCs) in BZO-doped YaBa2Cu3O7-x (BZO/YBCO) nanocomposite films. However, a microstructure analysis has revealed a defective, oxygen-deficient YBCO column around the BZO 1D-APCs due to the large lattice mismatch of ~7.7% between the BZO (3a=1.26 nm) and YBCO (c=1.17 nm), which has been blamed for the reduced pinning efficiency of BZO 1D-APCs. Herein, we report a dynamic lattice enlargement approach on the tensile strained YBCO lattice during the BZO 1D-APCs growth to induce c-axis elongation of the YBCO lattice up to 1.26 nm near the BZO 1D-APC/YBCO interface via Ca/Cu substitution on single Cu-O planes of YBCO, which prevents the interfacial defect formation by reducing the BZO/YBCO lattice mismatch to ~1.4%. Specifically, this is achieved by inserting thin Ca0.3Y0.7Ba2Cu3O7-x (CaY-123) spacers as the Ca reservoir in 2-6 vol.% BZO/YBCO nanocomposite multilayer (ML) films. A defect-free, coherent BZO 1D-APC/YBCO interface is confirmed in transmission electron microscopy and elemental distribution analyses. Excitingly, up to five-fold enhancement of Jc (B) at magnetic field B=9.0 T//c-axis and 65-77 K was obtained in the ML samples as compared to their BZO/YBCO single-layer (SL) counterpart’s. This has led to a record high pinning force density Fp together with significantly enhanced Bmax at which Fp reaches its maximum value Fp,max for BZO 1D-APCs at B//c-axis. At 65 K, the Fp,max ~158 GN/m3 and Bmax ~ 8.0 T for the 6% BZO/YBCO ML samples represent a significant enhancement over Fp,max ~36.1 GN/m3 and Bmax ~ 5.0 T for the 6% BZO/YBCO SL counterparts. This result not only illustrates the critical importance of a coherent BZO 1D-APC/YBCO interface in the pinning efficiency, but also provides a facile scheme to achieve such an interface to restore the pristine pinning efficiency of the BZO 1D-APCs.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 225
Author(s):  
A. Revathy ◽  
C. S. Boopathi ◽  
Osamah Ibrahim Khalaf ◽  
Carlos Andrés Tavera Romero

The wider bandgap AlGaN (Eg > 3.4 eV) channel-based high electron mobility transistors (HEMTs) are more effective for high voltage operation. High critical electric field and high saturation velocity are the major advantages of AlGaN channel HEMTs, which push the power electronics to a greater operating regime. In this article, we present the DC characteristics of 0.8 µm gate length (LG) and 1 µm gate-drain distance (LGD) AlGaN channel-based high electron mobility transistors (HEMTs) on ultra-wide bandgap β-Ga2O3 Substrate. The β-Ga2O3 substrate is cost-effective, available in large wafer size and has low lattice mismatch (0 to 2.4%) with AlGaN alloys compared to conventional SiC and Si substrates. A physics-based numerical simulation was performed to investigate the DC characteristics of the HEMTs. The proposed HEMT exhibits sheet charge density (ns) of 1.05 × 1013 cm−2, a peak on-state drain current (IDS) of 1.35 A/mm, DC transconductance (gm) of 277 mS/mm. The ultra-wide bandgap AlGaN channel HEMT on β-Ga2O3 substrate with conventional rectangular gate structure showed 244 V off-state breakdown voltage (VBR) and field plate gate device showed 350 V. The AlGaN channel HEMTs on β-Ga2O3 substrate showed an excellent performance in ION/IOFF and VBR. The high performance of the proposed HEMTs on β-Ga2O3 substrate is suitable for future portable power converters, automotive, and avionics applications.


2022 ◽  
Vol 9 ◽  
Author(s):  
Biswajit Jana ◽  
Kritika Ghosh ◽  
Krishna Rudrapal ◽  
Pallavi Gaur ◽  
P. K. Shihabudeen ◽  
...  

A great deal of interest has grown in both academia and industry toward flexible multiferroics in the recent years. The coupling of ferromagnetic properties with ferroelectric properties in multiferroic materials opens up many opportunities in applications such as magnetoelectric random access memories, magnetic field sensors, and energy harvesters. Multiferroic materials on a flexible platform bring an exciting opportunity for the next generation of consumer electronics owing to their unique characteristics of wearability, portability, and weight reduction. However, the fabrication of flexible multiferroic devices is still a great challenge due to various technical difficulties, including the requirement of high growth temperature of the oxide-based multiferroic materials, their lattice mismatch with the flexible substrates, and the brittleness of the functional layers. In this review article, we will discuss different methods of fabricating flexible or even freestanding oxide films to achieve flexible electronics. This article will address the benefits and challenges of each synthesis method in terms of interlayer interactions and growth parameters. Furthermore, the article will include an account of the possible bending limits of different flexible substrates without degrading the properties of the functional layer. Finally, we will address the challenges, opportunities, and future research directions in flexible multiferroics.


2D Materials ◽  
2022 ◽  
Author(s):  
Caio Silva ◽  
Daniela Dombrowski ◽  
Nicolae Atodiresei ◽  
Wouter Jolie ◽  
Ferdinand Farwick zum Hagen ◽  
...  

Abstract The lattice mismatch between a monolayer of MoS2 and its Au(111) substrate induces a moiré superstructure. The local variation of the registry between sulfur and gold atoms at the interface leads to a periodic pattern of strongly and weakly interacting regions. In consequence, also the electronic bands show a spatial variation. We use scanning tunneling microscopy and spectroscopy (STM/STS), x-ray photoelectron spectroscopy (XPS) and x-ray standing wave (XSW) for a determination of the geometric and electronic structure. The experimental results are corroborated by density functional theory (DFT). We obtain the geometric structure of the supercell with high precision, identify the fraction of interfacial atoms that are strongly interacting with the substrate, and analyze the variation of the electronic structure in dependence of the location within the moiré unit cell and the nature of the band.


2022 ◽  
pp. 550-559
Author(s):  
Min Xiong ◽  
Wenjun Zou ◽  
Ke Fan ◽  
Chaochao Qin ◽  
Sibo Li ◽  
...  

2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Chi-Ta Li ◽  
Kuan-Lin Lee ◽  
Sea-Fue Wang ◽  
Lung-Chien Chen

AbstractThis work describes the effect of a rubidium chloride (RbCl) interlayer in CsPbBr3 perovskite light-emitting diode (LED) structures. RbCl crystallites exhibited polyhedral structures and lattice parameters similar to those of CsPbBr3 perovskite crystallites. The lattice mismatch between the RbCl interlayer and CsPbBr3 active layer was only approximately 2%. The devices exhibited the best quality and performance when RbCl was used as the nucleation and carrier confinement layer. The crystallite sizes of CsPbBr3 with 0.2-, 0.5-, and 1-nm-thick RbCl bottom layers were 55.1, 65.4, and 55.1 nm, respectively. The full width at half maximum (FWHM) of the photoluminescence (PL) emission peak for CsPbBr3 with the RbCl bottom layer was 0.096 eV.


2022 ◽  
Vol 2152 (1) ◽  
pp. 012007
Author(s):  
Xunyong Lei

Abstract Layers of two-dimensional material are bonded together by van der Waals force, as a result, there is no need to take into consideration of the lattice mismatch in the formation of heterojunction, which is endowed with the characteristics of simple stacking in method, free of limitation to the type of materials and diverse changes. However, although the Van Der Waals heterojunction is relatively easy to stack, it is still difficult to generate inter-layer coupling between the thin crystal layers that form the Van Der Waals heterojunction. In most cases, the stacked heterojunction is simply stacked together without any new effects. Therefore, the realization of heterojunction coupling is a difficult problem to be considered in the process of preparing Van Der Waals heterojunction. In this paper, a method based on solution immersion and hot plate heating is proposed to optimize the mechanical stacking of Van Der Waals heterojunctions. It is found that the heterojunctions prepared by normal mechanical stacking method are usually uncoupled before treatment, but they can be stably coupled after treatment. Our method, simple, fast with low-cost, has been repeatedly verified to have a high success rate of coupling, which is suitable for most experimental groups to use and reproduce.


Author(s):  
А.Е. Романов ◽  
А.Л. Колесникова ◽  
М.Ю. Гуткин ◽  
В.Е. Бугров

The elastic interaction of quantum disks (QDs) in a nanowire (NW), i.e., in a hybrid QD/NW structure with sharp heterointerfaces, is considered for the first time. Within the framework of the defect micromechanics approach, the energy of QD pair interaction is established and it is demonstrated that for QDs with a lattice mismatch of the same sign, an attraction zone appears to each other, depending on the ratio of the axial size of the QD to the radius of the NW. The discovered effect should be taken into account when choosing the modes of formation of hybrid QD/NW structures and in models explaining their properties.


Sign in / Sign up

Export Citation Format

Share Document