Inheritance of stem rust resistance derived from Aegilops triuncialis in wheat line Tr129

2012 ◽  
Vol 92 (6) ◽  
pp. 1037-1041 ◽  
Author(s):  
Habibollah Ghazvini ◽  
Colin W. Hiebert ◽  
Taye Zegeye ◽  
Tom Fetch

Ghazvini, H., Hiebert, C. W., Zegeye, T. and Fetch, T. 2012. Inheritance of stem rust resistance derived from Aegilops triuncialis in wheat line Tr129. Can. J. Plant Sci. 92: 1037–1041. Stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a devastating disease of wheat that can cause serious grain yield reduction. The emergence of Pgt race TTKSK (Ug99) and new variants in Africa is considered a threat to wheat production worldwide. Among the primary gene pool of wheat, only a few stem rust resistance (Sr) genes confer resistance to TTKSK. Wild relatives of common wheat are an important source of disease resistance. A preliminary study indicated that the common wheat line Tr129, which contains one or more Aegilops triuncialis translocations, is resistant to race TTKSK. The goal of this study was to elucidate the inheritance of resistance to Pgt in line Tr129 and investigate the novelty of the gene(s) conferring resistance. A population was generated by crossing RL6071 with Tr129 and F2 and F3 progeny were inoculated with Pgt race MCCF at the first leaf stage. Segregation of F2 plants fit a 15:1 ratio ([Formula: see text]=1.48, P=0.22) indicating two dominant genes in Tr129 conditioned stem rust resistance to race MCCF. Segregation of F3 families also fit a 7:8:1 ratio ([Formula: see text]= 3.28, P=0.19) confirming the presence of two dominant genes. This is first report of stem rust resistance transferred to wheat from Ae. triuncialis.

2009 ◽  
Vol 89 (6) ◽  
pp. 1003-1008
Author(s):  
D R Knott

The common wheat (Triticum aestivum L.) cultivar Thatcher has resistance to many of the older races of stem rust (Puccinia graminis Pers. f. sp. tritici Eriks. & Henn.). Several genetic studies have shown that its resistance is complex in inheritance. To attempt to clarify the inheritance, 28 lines, each believed to carry a single resistance gene from Thatcher, were developed. The lines were tested with 13 races of stem rust. They fell into 13 types with resistance to from 1 to 11 races. Of the five genes previously identified in Thatcher, only two, Sr9g, and Sr12, were present in the lines. Four lines carried named genes, Sr6, Sr7a, Sr8a and S9d, which had not previously been detected in Thatcher. Thatcher is resistant to 8 of the 13 races. At least one line was resistant to each of the 13 races, including the five to which Thatcher is susceptible. Eleven of the 13 types of lines were resistant to race MCCD to which Thatcher is resistant. Seven of the types were resistant to race TMRT(15B-1) to which Thatcher is susceptible. Clearly, the inheritance of resistance in Thatcher is very complex and involves a considerable number of genes. It carries a surprising number of genes that appear to be hidden by the presence of suppressor genes or transposons.Key words: Common wheat, Triticum aestivum, Puccinia graminis, suppressors, tansposons


Genome ◽  
1987 ◽  
Vol 29 (3) ◽  
pp. 467-469 ◽  
Author(s):  
P. L. Dyck

Backcross lines of gene LrT2 for resistance to leaf rust in the common wheat (Triticum aestivum L.) 'Thatcher' unexpectedly show improved resistance to stem rust compared with that of the recurrent parent. Genetic–cytogenetic evidence indicates that LrT2 is on chromosome 7D, which is known to carry the "suppressor" gene(s) that prevent the expression of stem rust resistance conferred by other genes in 'Canthatch'. Thus, LrT2 may be a nonsuppressing allele of the suppressor gene(s) or be closely linked to such an allele. LrT2 has been designated Lr34. Key words: Triticum, wheat, rust resistance.


1957 ◽  
Vol 37 (4) ◽  
pp. 366-384 ◽  
Author(s):  
D. R. Knott

The inheritance of resistance to races 15B and 56 of stem rust was studied in the varieties Kenya 58, Kenya 117A, Kenya C9906, Kenya 338.AC.2.E.2, Kenya Governor, Kenya B286, Kenya 291.J.1.I.1, Kenya 321.BT.1.B.1 and Kenya 350.AD.9.C.2. The first five varieties had been studied previously and crosses involving them were not repeated. The genetic analysis of the varieties was based on diallel crosses and backcrosses to a susceptible parent, Marquis.All nine varieties proved to carry Sr7, a gene which conditions resistance to race 15B. Four varieties, Kenya 58, Kenya C9906, Kenya 291 and Kenya 350, carry the gene Sr6, which conditions a hypersensitive reaction to both race 15B and race 56. In addition, four of the varieties carry Sr9 and five carry Sr10, two genes which produce moderate resistance to race 56. Kenya 338.AC.2.E.2 carries two additional dominant, complementary genes, Sr11 and Sr12, which condition resistance to race 56.The genes, Sr9, Sr10, Sr11 and Sr12 are important modifiers of the resistance to race 15B conditioned by Sr7, with Sr9 probably having the greatest effect.


2005 ◽  
Vol 85 (1) ◽  
pp. 49-57 ◽  
Author(s):  
D. R. Knott ◽  
Dapeng Bai ◽  
Janice Zale

Wild emmer wheats (Triticum turgidum var. dicoccoides L.) are potentially valuable sources of leaf rust (Puccinia triticina Eriks.) and stem rust (Puccinia graminis f. sp. tritici Eriks. & Henn.) resistance in breeding both durum (T. turgidum var. durum L.) and common wheat (T. aestivum L.). In an extension of previous work, 11 rust resistant accessions of wild emmer wheat were crossed and backcrossed from two to five times to susceptible durum or common wheats. Genes for leaf or stem rust resistance were transferred singly into several susceptible genotypes. Backcross lines homozygous for resistance to leaf rust were tested with a set of either 9 or 10 leaf rust races and those homozygous for resistance to stem rust were tested with a set of either 10 or 13 stem rust races. The emmer wheats proved to carry a number of genes for resistance to each rust. In most cases, when a cross was made to a hexaploid wheat, resistance to both rusts was suppressed in the F1 seedlings, even when resistance was dominant in the tetraploids. Nevertheless, resistance was successfully transferred from several accessions to the hexaploids, indicating that suppressors on the A or B genome chromosomes were involved and segregation occurred for them. Rust resistance tended to decrease when it was transferred to another species, particularly hexaploid wheat. A number of lines carrying genes for either leaf rust or stem rust resistance were resistant to all races with which they were tested and have potential in wheat breeding. Key words: Emmer wheat, Triticum turgidum var. dicoccoides, stem rust, leaf rust, suppressors


1996 ◽  
Vol 76 (2) ◽  
pp. 317-319 ◽  
Author(s):  
D. R. Knott

Two genes for stem rust (Puccinia graminis Pers. f. sp. tritici Eriks. & Henn.) resistance were transferred from the Ethiopian durum wheat (Triticum turgidum L) accession St. 464 to Thatcher and Prelude/8* Marquis common wheat. One gene was shown by monosomic analysis to be on chromosome 4B and proved to be Sr7a. Monosomic analysis failed to locate the second gene. It is only partially dominant and conditions resistance to a range of races. Key words: Rust resistance, stem rust, wheat, Puccinia graminis tritici, Triticum aestivum, Triticum turgidum


Sign in / Sign up

Export Citation Format

Share Document