Testing for soil carbon saturation behavior in agricultural soils receiving long-term manure amendments

2014 ◽  
Vol 94 (3) ◽  
pp. 281-294 ◽  
Author(s):  
W. Feng ◽  
M. Xu ◽  
M. Fan ◽  
S. S. Malhi ◽  
J. J. Schoenau ◽  
...  

Feng, W., Xu, M., Fan, M., Malhi, S. S., Schoenau, J. J., Six, J. and Plante, A. F. 2014. Testing for soil carbon saturation behavior in agricultural soils receiving long-term manure amendments. Can. J. Soil Sci. 94: 281–294. Agricultural soils are typically depleted in soil organic matter compared with their undisturbed counterparts, thus reducing their fertility. Organic amendments, particularly manures, provide the opportunity to restore soil organic matter stocks, improve soil fertility and potentially sequester atmospheric carbon (C). The application of the soil C saturation theory can help identify soils with large C storage potentials. The goal of this study was to test whether soil C saturation can be observed in various soil types in agricultural ecosystems receiving long-term manure amendments. Seven long-term agricultural field experiments from China and Canada were selected for this study. Manure amendments increased C concentrations in bulk soil, particulate organic matter+sand, and silt+clay fractions in all the experiments. The increase in C concentrations of silt+clay did not fit the asymptotic regression as a function of C inputs better than the linear regression, indicating that silt+clay did not exhibit C saturation behavior. However, 44% of calculated C loading values for silt+clay were greater than the presumed maximal C loading, suggesting that this maximum may be greater than 1 mg C m−2 for many soils. The influences of soil mineral surface properties on C concentrations of silt+clay fractions were site specific. Fine soil particles did not exhibit C saturation behavior likely because current C inputs were insufficient to fill the large C saturation deficits of intensely cultivated soils, suggesting these soils may continue to act as sinks for atmospheric C.

2012 ◽  
Vol 9 (8) ◽  
pp. 3013-3028 ◽  
Author(s):  
C. A. Sierra ◽  
S. E. Trumbore ◽  
E. A. Davidson ◽  
S. D. Frey ◽  
K. E. Savage ◽  
...  

Abstract. Representing the response of soil carbon dynamics to global environmental change requires the incorporation of multiple tools in the development of predictive models. An important tool to construct and test models is the incorporation of bomb radiocarbon in soil organic matter during the past decades. In this manuscript, we combined radiocarbon data and a previously developed empirical model to explore decade-scale soil carbon dynamics in a temperate forest ecosystem at the Harvard Forest, Massachusetts, USA. We evaluated the contribution of different soil C fractions to both total soil CO2 efflux and microbially respired C. We tested the performance of the model based on measurable soil organic matter fractions against a decade of radiocarbon measurements. The model was then challenged with radiocarbon measurements from a warming and N addition experiment to test multiple hypotheses about the different response of soil C fractions to the experimental manipulations. Our results showed that the empirical model satisfactorily predicts the trends of radiocarbon in litter, density fractions, and respired CO2 observed over a decade in the soils not subjected to manipulation. However, the model, modified with prescribed relationships for temperature and decomposition rates, predicted most but not all the observations from the field experiment where soil temperatures and nitrogen levels were increased, suggesting that a larger degree of complexity and mechanistic relations need to be added to the model to predict short-term responses and transient dynamics.


2001 ◽  
Vol 81 (1) ◽  
pp. 21-31 ◽  
Author(s):  
E G Gregorich ◽  
C F Drury ◽  
J A Baldock

Legume-based cropping systems could help to increase crop productivity and soil organic matter levels, thereby enhancing soil quality, as well as having the additional benefit of sequestering atmospheric C. To evaluate the effects of 35 yr of maize monoculture and legume-based cropping on soil C levels and residue retention, we measured organic C and 13C natural abundance in soils under: fertilized and unfertilized maize (Zea mays L.), both in monoculture and legume-based [maize-oat (Avena sativa L.)-alfalfa (Medicago sativa L.)-alfalfa] rotations; fertilized and unfertilized systems of continuous grass (Poa pratensis L.); and under forest. Solid state 13C nuclear magnetic resonance (NMR) was used to chemically characterize the organic matter in plant residues and soils. Soils (70-cm depth) under maize cropping had about 30-40% less C, and those under continuous grass had about 16% less C, than those under adjacent forest. Qualitative differences in crop residues were important in these systems, because quantitative differences in net primary productivity and C inputs in the different agroecosystems did not account for observed differences in total soil C. Cropping sequence (i.e., rotation or monoculture) had a greater effect on soil C levels than application of fertilizer. The difference in soil C levels between rotation and monoculture maize systems was about 20 Mg C ha-1. The effects of fertilization on soil C were small (~6 Mg C ha-1), and differences were observed only in the monoculture system. The NMR results suggest that the chemical composition of organic matter was little affected by the nature of crop residues returned to the soil. The total quantity of maize-derived soil C was different in each system, because the quantity of maize residue returned to the soil was different; hence the maize-derived soil C ranged from 23 Mg ha-1 in the fertilized and 14 Mg ha-1 in the unfertilized monoculture soils (i.e., after 35 maize crops) to 6-7 Mg ha-1 in both the fertilized and unfertilized legume-based rotation soils (i.e., after eight maize crops). The proportion of maize residue C returned to the soil and retained as soil organic C (i.e., Mg maize-derived soil C/Mg maize residue) was about 14% for all maize cropping systems. The quantity of C3-C below the plow layer in legume-based rotation was 40% greater than that in monoculture and about the same as that under either continuous grass or forest. The soil organic matter below the plow layer in soil under the legume-based rotation appeared to be in a more biologically resistant form (i.e., higher aromatic C content) compared with that under monoculture. The retention of maize residue C as soil organic matter was four to five times greater below the plow layer than that within the plow layer. We conclude that residue quality plays a key role in increasing the retention of soil C in agroecosystems and that soils under legume-based rotation tend to be more “preservative” of residue C inputs, particularly from root inputs, than soils under monoculture. Key words: Soil carbon, 13C natural abundance, 13C nuclear magnetic resonance, maize cropping, legumes, root carbon


Soil Research ◽  
2001 ◽  
Vol 39 (3) ◽  
pp. 435 ◽  
Author(s):  
R. C. Dalal ◽  
K. Y. Chan

The Australian cereal belt stretches as an arc from north-eastern Australia to south-western Australia (24˚S–40˚S and 125˚E–147˚E), with mean annual temperatures from 14˚C (temperate) to 26˚C (subtropical), and with annual rainfall ranging from 250 mm to 1500 mm. The predominant soil types of the cereal belt include Chromosols, Kandosols, Sodosols, and Vertosols, with significant areas of Ferrosols, Kurosols, Podosols, and Dermosols, covering approximately 20 Mha of arable cropping and 21 Mha of ley pastures. Cultivation and cropping has led to a substantial loss of soil organic matter (SOM) from the Australian cereal belt; the long-term SOM loss often exceeds 60% from the top 0–0.1 m depth after 50 years of cereal cropping. Loss of labile components of SOM such as sand-size or particulate SOM, microbial biomass, and mineralisable nitrogen has been even higher, thus resulting in greater loss in soil productivity than that assessed from the loss of total SOM alone. Since SOM is heterogeneous in nature, the significance and functions of its various components are ambiguous. It is essential that the relationship between levels of total SOM or its identif iable components and the most affected soil properties be established and then quantif ied before the concentrations or amounts of SOM and/or its components can be used as a performance indicator. There is also a need for experimentally verifiable soil organic C pools in modelling the dynamics and management of SOM. Furthermore, the interaction of environmental pollutants added to soil, soil microbial biodiversity, and SOM is poorly understood and therefore requires further study. Biophysically appropriate and cost-effective management practices for cereal cropping lands are required for restoring and maintaining organic matter for sustainable agriculture and restoration of degraded lands. The additional benefit of SOM restoration will be an increase in the long-term greenhouse C sink, which has the potentialto reduce greenhouse emissions by about 50 Mt CO2 equivalents/year over a 20-year period, although current improved agricultural practices can only sequester an estimated 23% of the potential soil C sink.


Geoderma ◽  
2017 ◽  
Vol 306 ◽  
pp. 89-98 ◽  
Author(s):  
N. Meyer ◽  
L. Bornemann ◽  
G. Welp ◽  
H. Schiedung ◽  
M. Herbst ◽  
...  

2012 ◽  
Vol 9 (2) ◽  
pp. 2197-2232 ◽  
Author(s):  
C. A. Sierra ◽  
S. E. Trumbore ◽  
E. A. Davidson ◽  
S. D. Frey ◽  
K. E. Savage ◽  
...  

Abstract. Representing the response of soil carbon dynamics to global environmental change requires the incorporation of multiple tools in the development of predictive models. An important tool to construct and test models is the incorporation of bomb radiocarbon in soil organic matter during the past decades. In this manuscript, we combined radiocarbon data and a previously developed empirical model to explore decade-scale soil carbon dynamics in a temperate forest ecosystem at the Harvard Forest, Massachusetts, USA. We evaluated the contribution of different soil C fractions to both total soil CO2 efflux and microbially-respired C. We tested the performance of the model based on measurable soil organic matter fractions against a decade of radiocarbon measurements. The model was then challenged with radiocarbon measurements from a warming and N addition experiment to test multiple hypotheses about the different response of soil C fractions to the experimental manipulations. Our results showed that the empirical model satisfactorily predicts the trends of radiocarbon in litter, density fractions, and respired CO2 observed over a decade in the soils not subjected to manipulation. However, the model, modified with prescribed relationships for temperature and decomposition rates, predicted most but not all the observations from the field experiment where soil temperatures and nitrogen levels were increased, suggesting that a larger degree of complexity and mechanistic relations need to be added to the model to predict short-term responses and transient dynamics.


Geoderma ◽  
2021 ◽  
Vol 383 ◽  
pp. 114700
Author(s):  
Claudia Savarese ◽  
Marios Drosos ◽  
Riccardo Spaccini ◽  
Vincenza Cozzolino ◽  
Alessandro Piccolo

2006 ◽  
Vol 3 (1) ◽  
pp. 65-68 ◽  
Author(s):  
C. Fang ◽  
P. Smith ◽  
J. U. Smith

Abstract. A recent paper by Knorr et al. (2005a) suggested that the decomposition of resistant soil organic matter is more temperature sensitive than labile organic matter. In Knorr et al.'s (2005a) model, the reference decay rate was presumed to be same for all pools of soil carbon. We refit Knorr et al.'s (2005a) model but allow both the activation energy and the reference decay rate to vary among soil C pools. Under these conditions, a similar fit to measured data can be obtained without invoking the assumption that the resistant C pool is more temperature sensitive than the labile pool. Other published evidence does not unequivocally support Knorr et al.'s (2005a) hypothesis of increased temperature sensitivity of resistant pools of soil carbon. Because of the lack of experimental data, Knorr et al.'s (2005a) conclusion that the decomposition of the resistant SOM is more temperature sensitive than the labile pool is premature.


Sign in / Sign up

Export Citation Format

Share Document