labile organic matter
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 32)

H-INDEX

33
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Edgart Flores ◽  
Sebastian Cantarero ◽  
Paula Ruiz-Fernández ◽  
Nadia Dildar ◽  
Matthias Zabel ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3077
Author(s):  
Tzong-Yueh Chen ◽  
Annelie Skoog

Organic aggregates, which formed from small particles and dissolved material, were chemically characterized in the Long Island Sound coastal waters. In this study, six aggregation experiments were conducted on low-salinity samples (the Thames River, CT, USA; salinity of 6.3–6.8) and high-salinity samples (the coast of Avery Point, CT, USA; salinity of 21.4–26.7). Water samples were incubated on a roller table for two days under dark conditions to generate laboratory-made aggregates. Particulate organic carbon (POC) concentrations increased 5–39% after two days of rolling. A higher POC increase occurred in low-salinity samples. The concentrations of neutral aldoses and amino acids, as well as their C- and N-yields, decreased during the experiments (except for particulate hydrolysable amino acid in low-salinity samples), while bacterial abundance increased 50–476%, indicating microbial degradation of biologically labile organic matter. Particulate hydrolysable amino acid was preferentially preserved in P-limited systems. An enrichment factor analysis showed the preferential microbial degradation of particulate hydrolysable neutral aldose and glucose appeared as the most labile aldose. The increase in bulk POC and the decrease in the fraction of labile organic carbon (neutral aldose and amino acid) in the particulate phase resulted in an accumulation of uncharacterized (presumably more refractory) particulate organic matter.


2021 ◽  
Author(s):  
Dennison Bindhulekha Arya ◽  
Salom Gnana Thanga Vincent ◽  
J.K Reshma ◽  
Junaid Hassan Salahudeen

Abstract Estuarine sediments are best suited for bioprospecting cellulose degrading microorganisms because of continuous input of cellulosic carbon from rivers and terrestrial runoff, and such sediments act as a substrate for decomposition by microbes. Sediment samples were collected from thirteen stations of Ashtamudi estuary, a tropical Ramsar site during April 2016 and January 2017 and analysed for environmental variables such as temperature, pH, electrical conductivity, oxidation- reduction potential, sulphate, total organic carbon (Corg), carbohydrate, protein, lipid and labile organic matter. Microcosm experiments were conducted in the sediment samples to compare native and substrate-induced cellulase enzyme activities in mesophilic and thermophilic conditions added with crystalline cellulose and cellobiose as substrates. Abundance of cellulolytic anaerobes in the roll tubes was higher with cellobiose than crystalline cellulose. Substrate induced enzyme activity was more than native enzyme activity [0.0012±0.0001- 0.004±0.002 (April 2016) and 0.004±0.001- 0.161±0.002 mg glucose h-1 (January 2017)] in the sediment samples and cellulolytic activity was more pronounced in thermophilic conditions during April 2016. Redundancy analysis indicated that salinity was the highest determining factor for explaining variations among bacterial abundance and activity during April 2016 and sediment lipid content during January 2017. The study reveals that estuarine sediments can act as a potential source of thermophilic cellulase enzyme producing bacteria, which needs to be further explored owing to their vast industrial applications.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2026
Author(s):  
Nikola Koković ◽  
Elmira Saljnikov ◽  
Frank Eulenstein ◽  
Dragan Čakmak ◽  
Aneta Buntić ◽  
...  

Microbially mediated soil organic matter is an extremely sensitive pool that indicates subtle changes in the quality parameters responsible for the soil’s ecological and productive functions. Fifty years of mineral fertilization of a wheat-corn cropping system has a strong impact on soil quality parameters. The goal of the research was to study the dynamics and quality of soil biological parameters affected by increasing amounts of mineral nitrogen. Soil respiration, potentially mineralizable C and N, microbial biomass C and N and light-fraction OM on Cambisol were analyzed in the following treatments: (1) Control (without fertilization); (2) NPK (60/51/67); (3) NPK (90/51/67); (4) NPK (120/51/67); (5) NPK (150/51/67 kg ha−1). The parameters studied were significantly affected by the long-term application of mineral fertilizer compared with both the control and the adjacent native soil. The highest amounts of nitrogen (N150) did not significantly differ from N120 and N90 for most of the parameters studied. Potentially mineralizable C represented the largest labile carbon pool, while microbial biomass N was the largest labile nitrogen pool. The mineralization rates for C and N were oppositely distributed over the seasons. The sensitivity index correlated with the amount of light-fraction OM. The results give a deeper insight into the behavior and distribution of different pools of labile SOM in the agro-landscapes and can serve as a reliable basis for further research focused on zero soil degradation.


2021 ◽  
Vol 13 (19) ◽  
pp. 10869
Author(s):  
Aishatu Mala Musa ◽  
Che Fauziah Ishak ◽  
Noraini Md. Jaafar ◽  
Daljit Singh Karam

Recycling of wastes via composting is advocated as a means to reduce environmental hazards due to the dumping of wastes. Composting also creates a vital source of organic matter that is important in nutrient and soil moisture retention, soil fertility preservation and improving the physical and chemical properties of soils. This study was conducted to evaluate the short-term effects of four compost amendments in an Oxisol on carbon dynamics (carbon dioxide evolution and carbon transformation). The composts were prepared in 3:1 and 1:2 of fruit and vegetable waste (FVW) to biodegradable municipal waste (BMW) with and without indigenous microorganisms (IMO) (3:1 +IMO, 1:2 +IMO, 3:1 −IMO, 1:2 −IMO). Soil incubation studies were carried out for 35 days at three compost application rates of 0, 5 and 10 Mg ha−1, with measurements done including the CO2 evolution, dehydrogenase enzyme (DHA) assay and compost Fourier transform infrared (FTIR) spectroscopy spectral analysis. At 10 Mg ha−1 compost application rate, increased soil respiration rate was obtained at 3:1 +IMO compost, mostly due to increased labile organic matter and higher amount of FVW in the compost mixture, which stimulated soil microorganisms and/or their activities reflected by increased evolution of CO2 in the process of decomposition of the added composts in the compost-amended soils. The DHA activity increased with compost application rates, and significantly, the highest DHA activity was recorded at 3:1 +IMO compost applied at 10 Mg ha−1 soil at 1.38 triphenylformazan (TPF)/g dry soil/24 h. The compost FTIR spectral analysis showed transformations that occurred due to the composting that was carried out. A broadband between 3279–3347 cm wavelength in the FTIR spectroscopy indicated the presence of carboxylic and hydroxyl functional groups because of carbon transformation that occurred in the composts.


2021 ◽  
Author(s):  
Edgart Flores ◽  
Sebastian I. Cantarero ◽  
Paula Ruiz-Fernández ◽  
Nadia Dildar ◽  
Matthias Zabel ◽  
...  

Abstract. Elevated concentrations of organic matter are found in sediments of hadal trenches relative to those found in the abyssal seabed, but the origin of such biological material remains elusive. Here, we report the composition and distribution of cell membrane intact polar lipids (IPLs) in surface sediments around the deepest points of the Atacama Trench and adjacent bathyal depths to assess and constrain the sources of labile organic matter in the hadal seabed. Multiscale bootstrap resampling of IPLs’ structural diversity and abundance indicates distinct lipid signatures in the sediments of the Atacama Trench that are more closely related to those found in bathyal sediments than to those previously reported for the upper ocean water column in the region. While the overall number of unique IPL structures in hadal sediments is limited and they contribute a small fraction of the total IPL pool, they include a high contribution of phospholipids with mono- and di-unsaturated fatty acids that are not associated with photoautotrophic sources. The diversity of labile IPLs in hadal sediments of the Atacama Trench suggests the presence of in situ microbial production and biomass that resembles traits of physiological adaptation to high pressure and low temperature, and/or the transport of labile organic matter from shallower sediment. We argue that the export of the most labile lipid component of the organic matter pool from the euphotic zone and the overlying oxygen minimum zone into the hadal sediments is neglectable. Our results contribute to the understanding of the mechanisms that control the delivery of labile organic matter to this extreme deep-sea ecosystem, whereas they provide insights into some potential physiological adaptation of the in situ microbial community to high pressure and low temperature through lipid remodeling.


2021 ◽  
Vol 9 (8) ◽  
pp. 849
Author(s):  
Lorie W. Staver ◽  
Jeffrey C. Cornwell ◽  
Nicholas J. Nidzieko ◽  
Kenneth W. Staver ◽  
J. Court Stevenson ◽  
...  

Tidal marsh restoration using dredged material is being undertaken in many coastal areas to replace lost habitat and ecosystem services due to tidal marsh loss. The fate of high levels of nitrogen (N) in fine-grained dredged material used as a substrate for marsh restoration is uncertain, but if exported tidally may cause subtidal habitat degradation. In this study, a mass balance was developed to characterize N fluxes in a two-year-old restored tidal marsh constructed with fine-grained dredged material at Poplar Island, MD, in Chesapeake Bay, and to evaluate the potential impact on the adjacent submersed aquatic vegetation (SAV) habitat. Denitrification and N accumulation in Spartina organic matter were identified as the major sinks (21.31 and 28.5 mg N m−2 d−1, respectively), while tidal export of TN was more modest (9.4 mg N m−2 d−1) and inorganic N export was low (1.59 mg N m−2 d−1). Internal cycling helped retain N within the marsh. Mineralization of N associated with labile organic matter in the dredged material was likely a large, but unquantified, source of N supporting robust plant growth and N exports. Exceedances of SAV water quality habitat requirements in the subtidal region adjacent to the marsh were driven by elevated Chesapeake Bay concentrations rather than enrichment by the marsh.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1269
Author(s):  
Cristina Ribaudo ◽  
Juliette Tison-Rosebery ◽  
Mélissa Eon ◽  
Gwilherm Jan ◽  
Vincent Bertrin

The presence of dense macrophyte canopies in shallow lakes locally generates thermal stratification and the buildup of labile organic matter, which in turn stimulate the biological oxygen demand. The occurrence of hypoxic conditions may, however, be buffered by strong wind episodes, which favor water mixing and reoxygenation. The present study aims at explicitly linking the wind action and water oxygenation within dense hydrophytes stands in shallow lakes. For this purpose, seasonal 24 h-cycle campaigns were carried out for dissolved gases and inorganic compounds measurements in vegetated stands of an oligo-mesotrophic shallow lake. Further, seasonal campaigns were carried out in a eutrophic shallow lake, at wind-sheltered and -exposed sites. Overall results showed that dissolved oxygen (DO) daily and seasonal patterns were greatly affected by the degree of wind exposure. The occurrence of frequent wind episodes favored the near-bottom water mixing, and likely facilitated mechanical oxygen supply from the atmosphere or from the pelagic zone, even during the maximum standing crop of plants (i.e., summer and autumn). A simple model linking wind exposure (Keddy Index) and water oxygenation allowed us to produce an output management map, which geographically identified wind-sheltered sites as the most subjected to critical periods of hypoxia.


2021 ◽  
Vol 47 (2) ◽  
pp. 800-811
Author(s):  
Daniel A. Shilla

This study was carried out to investigate spatial changes in the quality and quantity of sedimentary organic matter in the Rufiji mangrove system, Tanzania. Sediment samples were collected from three sampling sites. Total organic matter in mangrove sediments ranged from 7.28 ± 2.02% to 10.58 ± 1.34%. Protein concentrations varied from 1,145.33 ± 20.33 μg/g to 2,747.50 ± 25.14 μg/g in the mangrove sediments. Total carbohydrates, lipids and biopolymeric carbon in mangrove sediments ranged between 1,110.50 ± 16.31 μg/g and 1,914.17 ± 27.79 μg/g, 1,436.50 ± 24.13 μg/g and 6,373.50 ± 25.79 μg/g, and 4,496 μg C/g and 10,231.50 μg C/g, respectively. Tannins and lignins in mangrove sediments varied from 817.67 ± 12.97 μg/g to 1786.50 ± 30.74 μg/g, while stable carbon isotope (δ13C) in Rufiji mangrove sediments ranged between –26.64 ± 0.10 ‰ and –25.48 ± 0.13 ‰. Higher protein:carbohydrate (PRT:CHO) at station 3 indicated the presence of freshly deposited organic matter. The high lipid:carbohydrate (LPD:CHO) ratios observed in the Rufiji mangrove systems pointed towards the high quality of labile organic matter which supports benthic fauna. PCA revealed the association of variables and their distribution on trends across sites of the Rufiji mangrove system. Keywords: Organic matter, biochemical composition, Rufiji, mangroves, sediments  


Sign in / Sign up

Export Citation Format

Share Document