LONG-TERM EFFECTS OF INTENSIVE CULTIVATION ON SOIL QUALITY IN THE POTATO-GROWING AREAS OF NEW BRUNSWICK (CANADA) AND MAINE (U.S.A.)

1980 ◽  
Vol 60 (3) ◽  
pp. 421-428 ◽  
Author(s):  
G. R. SAINI ◽  
W. J. GRANT

Reviewing the research conducted in New Brunswick (Canada) and Maine (U.S.A.), this paper discusses the unfavorable effects of stone removal on potato yield, soil temperature, moisture, compaction and erodibility of soil. Data presented also show that continuous cropping of potatoes is detrimental to soil structure and soil fertility.

2003 ◽  
Vol 43 (4) ◽  
pp. 325 ◽  
Author(s):  
K. Y. Chan ◽  
D. P. Heenan ◽  
H. B. So

Light-textured soils (<35% clay) make up more than 80%, by area, of cropping soils in Australia. Many have inherent soil physical problems, e.g. hardsetting, sodicity and low organic carbon levels. Maintenance and improvement of soil organic carbon levels are crucial to preserving the soil structure and physical fertility of these soils.A review of field trials on conservation tillage (3–19 years duration) on these soils in southern Australia revealed that significantly higher soil organic carbon levels compared with conventional tillage were found only in the wetter areas (>500 mm) and the differences were restricted to the top 2.5–10.0 cm. The average magnitude of the difference was lower than that reported in the USA. The lack of a positive response to conservation tillage is probably a reflection of a number of factors, namely low crop yield (due to low rainfall), partial removal of stubble by grazing and the high decomposition rate (due to the high temperature). There is evidence suggesting that under continuous cropping in the drier areas, the soil organic carbon level continues to decline, even under conservation tillage.Better soil structure and soil physical properties, namely macro-porosity, aggregate stability and higher infiltration have been reported under conservation tillage when compared with conventional tillage. However, little information on long-term changes of these properties under conservation tillage is available. As many of these soil qualities are associated directly or indirectly with soil organic carbon levels, the lack of significant increase in the latter suggests that many of these improvements may not be sustainable in the longer term, particularly in the drier areas. Continuous monitoring of long-term changes in the soil organic carbon and soil quality under conservation tillage in different agro-ecological zones is needed.


Geoderma ◽  
2016 ◽  
Vol 267 ◽  
pp. 185-195 ◽  
Author(s):  
V. Aranda ◽  
J. Calero ◽  
I. Plaza ◽  
A. Ontiveros-Ortega

1982 ◽  
Vol 62 (3) ◽  
pp. 741-750 ◽  
Author(s):  
LARRY HUME

The effect of fertilizer application and three rotations (continuous cropping, fallow-wheat, and fallow-wheat-wheat rotations) on the species composition of the weed community was examined using rotations that had been running for 21–22 yr at Indian Head, Saskatchewan. Before spring seeding, stinkweed and lamb’s-quarters were more abundant on wheat after fallow than they were on either wheat following wheat after fallow or on continuous cropping. After seeding, continuous cropping produced the largest weed densities of green foxtail, thyme-leaved spurge, and vetch. In most instances, Canada thistle was most abundant on continuously cropped and nonfertilized plots. After spring seeding, green foxtail was the only species with a larger density on fertilized plots. Interactions between fertilizer application and rotation, and among species, influenced species composition in the weed community. Fertilizer application tended to reduce community differences between continuous cropping and short-term wheat-fallow rotations. Allelopathic effects of Canada thistle may have reduced green foxtail and redroot pigweed densities. With the use of 2-or 3-yr wheat-fallow rotations and herbicide application, weed problems can be minimized in southeastern Saskatchewan.


Sign in / Sign up

Export Citation Format

Share Document