green foxtail
Recently Published Documents


TOTAL DOCUMENTS

303
(FIVE YEARS 25)

H-INDEX

35
(FIVE YEARS 2)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Maria Ermakova ◽  
Hannah Osborn ◽  
Michael Groszmann ◽  
Soumi Bala ◽  
Andrew Bowerman ◽  
...  

A fundamental limitation of photosynthetic carbon fixation is the availability of CO2. In C4 plants, primary carboxylation occurs in mesophyll cytosol, and little is known about the role of CO2 diffusion in facilitating C4 photosynthesis. We have examined the expression, localization, and functional role of selected plasma membrane intrinsic aquaporins (PIPs) from Setaria italica (foxtail millet) and discovered that SiPIP2;7 is CO2-permeable. When ectopically expressed in mesophyll cells of S. viridis (green foxtail), SiPIP2;7 was localized to the plasma membrane and caused no marked changes in leaf biochemistry. Gas-exchange and C18O16O discrimination measurements revealed that targeted expression of SiPIP2;7 enhanced the conductance to CO2 diffusion from the intercellular airspace to the mesophyll cytosol. Our results demonstrate that mesophyll conductance limits C4 photosynthesis at low pCO2 and that SiPIP2;7 is a functional CO2 permeable aquaporin that can improve CO2 diffusion at the airspace/mesophyll interface and enhance C4 photosynthesis.


2021 ◽  
Vol 13 (10) ◽  
pp. 1
Author(s):  
Nader Soltani ◽  
Christy Shropshire ◽  
Peter H. Sikkema

Five field experiments were conducted in Ontario Canada during 2018-2020 to determine the level of crop injury, weed control and white bean yield with up to four-way mixtures of herbicides applied preplant incorporated (PPI). The trials were arranged in a factorial design: Factor 1 was “Grass herbicide” including no grass herbicide, trifluralin, S-metolachlor and trifluralin + S-metolachlor and Factor 2 was “Broadleaf herbicide” including no broadleaf herbicide, halosulfuron, imazethapyr and halosulfuron + imazethapyr. At 2 and 4 weeks after emergence (WAE), there was minimal (≤ 4%) white bean injury. At 8 weeks after herbicide application (WAA), trifluralin, S-metolachlor or trifluralin + S-metolachlor averaged across Factor 2 controlled velvetleaf 69, 71 and 62%, respectively; halosulfuron, imazethapyr and halosulfuron + imazethapyr averaged across Factor 1 controlled velvetleaf 75, 95 and 97%, respectively. At 8 WAA, trifluralin, S-metolachlor and trifluralin + S-metolachlor controlled pigweed 93, 90 and 97%, respectively, and halosulfuron, imazethapyr and halosulfuron + imazethapyr controlled pigweed 97, 79 and 98%, respectively. At 8 WAA, trifluralin, S-metolachlor and trifluralin + S-metolachlor provided poor (≤ 32%) control of common ragweed while halosulfuron, imazethapyr and halosulfuron + imazethapyr controlled common ragweed 86, 53 and 87%, respectively. The 4-way tankmix of trifluralin, S-metolachlor, halosulfuron + imazethapyr controlled common ragweed 95%. At 8 WAA, trifluralin, S-metolachlor and trifluralin + S-metolachlor controlled common lambsquarters 81, 38 and 91%, respectively, and halosulfuron, imazethapyr and halosulfuron + imazethapyr controlled common lambsquarters 94, 97 and 99%, respectively. At 8 WAA, trifluralin, S-metolachlor and trifluralin + S-metolachlor provided poor (≤ 46%) control of wild mustard while halosulfuron, imazethapyr and halosulfuron + imazethapyr provided excellent (≥ 97%) wild mustard control. At 8 WAA, trifluralin, S-metolachlor and trifluralin + S-metolachlor controlled barnyardgrass 70, 85 and 94%, respectively, and halosulfuron, imazethapyr and halosulfuron + imazethapyr controlled barnyardgrass 9, 50 and 59%, respectively. At 8 WAA, trifluralin, S-metolachlor and trifluralin + S-metolachlor controlled green foxtail 89 to 98% and halosulfuron, imazethapyr and halosulfuron + imazethapyr controlled green foxtail 19, 69 and 67%, respectively. Weed interference reduced white bean yield 76%. Generally, white bean yield reflected the level of weed control. Based on these results, the 2- and 3-way tankmixes of herbicides evaluated generally provide similar weed control as the 4-way tankmixes.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 965
Author(s):  
Ofir Degani ◽  
Danielle Regev ◽  
Shlomit Dor

The maize pathogen Magnaporthiopsis maydis causes severe damage to commercial fields in the late growth stages. This late wilt disease has spread since its discovery (the 1980s) and is now common in most corn-growing areas in Israel. In some fields and sensitive plant species, the disease can affect 100% of the plants. The M. maydis pathogen has a hidden endophytic lifecycle (developed inside the plants with no visible symptoms) in resistant corn plants and secondary hosts, such as green foxtail and cotton. As such, it may also be opportunist and attack the host in exceptional cases when conditions encourage it. This work aims to study the pathogen’s interactions with maize endophytes (which may play a part in the plant’s resistance factors). For this purpose, 11 fungal and bacterial endophytes were isolated from six sweet and fodder corn cultivars with varying susceptibility to late wilt disease. Of these, five endophytes (four species of fungi and one species of bacteria) were selected based on their ability to repress the pathogen in a plate confrontation test. The selected isolates were applied in seed inoculation and tested in pots in a growth room with the Prelude maize cultivar (a late wilt-sensitive maize hybrid) infected with the M. maydis pathogen. This assay was accompanied by real-time qPCR that enables tracking the pathogen DNA inside the host roots. After 42 days, two of the endophytes, the Trichoderma asperellum, and Chaetomium subaffine fungi, significantly (p < 0.05) improved the infected plants’ growth indices. The fungal species T. asperellum, Chaetomium cochliodes, Penicillium citrinum, and the bacteria Bacillus subtilis treatments were able to reduce the M. maydis DNA in the host plant’s roots. Studying the maize endophytes’ role in restricting the invasion and devastating impact of M. maydis is an essential initial step towards developing new measures to control the disease. Such an environmentally friendly control interface will be based on strengthening the plants’ microbiome.


2021 ◽  
Vol 83 (5) ◽  
pp. 311-319
Author(s):  
Ruth J. Kaggwa ◽  
Hui Jiang ◽  
Rita A. Ryan ◽  
Justin Paul Zahller ◽  
Elizabeth A. Kellogg ◽  
...  

Globally, most human caloric intake is from crops that belong to the grass family (Poaceae), including sugarcane (Saccharum spp.), rice (Oryza sativa), maize (or corn, Zea mays), and wheat (Triticum aestivum). The grasses have a unique morphology and inflorescence architecture, and some have also evolved an uncommon photosynthesis pathway that confers drought and heat tolerance, the C4 pathway. Most secondary-level students are unaware of the global value of these crops and are unfamiliar with plant science fundamentals such as grass architecture and the genetic concepts of genotype and phenotype. Green foxtail millet (Setaria viridis) is a model organism for C4 plants and a close relative of globally important grasses, including sugarcane. It is ideal for teaching about grass morphology, the economic value of grasses, and the C4 photosynthetic pathway. This article details a teaching module that uses S. viridis to engage entire classrooms of students in authentic research through a laboratory investigation of grass morphology, growth cycle, and genetics. This module includes protocols and assignments to guide students through the process of growing one generation of S. viridis mutants and reference wild-type plants from seed to seed, taking measurements, making critical observations of mutant phenotypes, and discussing their physiological implications.


2021 ◽  
Author(s):  
Maria Ermakova ◽  
Hannah Osborn ◽  
Michael Groszmann ◽  
Soumi Bala ◽  
Samantha McGaughey ◽  
...  

AbstractA fundamental limitation of photosynthetic carbon fixation is the availability of CO4. In C4 plants, primary carboxylation occurs in mesophyll cytosol, and little is known about the role of CO2 diffusion in facilitating C4 photosynthesis. We have examined the expression, localization, and functional role of selected plasma membrane intrinsic aquaporins (PIPs) from Setaria italica (foxtail millet) and discovered that SiPIP2;7 is CO2-permeable. When ectopically expressed in mesophyll cells of S. viridis (green foxtail), SiPIP2;7 was localized to the plasma membrane and caused no marked changes in leaf biochemistry. Gas-exchange and C18O16O discrimination measurements revealed that targeted expression of SiPIP2;7 enhanced the conductance to CO2 diffusion from the intercellular airspace to the mesophyll cytosol. Our results demonstrate that mesophyll conductance limits C4 photosynthesis at low pCO2 and that SiPIP2;7 is a functional CO2 permeable aquaporin that can improve CO2 diffusion at the airspace/mesophyll interface and enhance C4 photosynthesis.


Diversity ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 159
Author(s):  
Wei-Hsun Hsieh ◽  
Yen-Chiun Chen ◽  
Hsien-Chun Liao ◽  
Yann-Rong Lin ◽  
Chih-Hui Chen

Setaria viridis (L.) Beauv., or green foxtail, is native to Eurasia and is the putative ancestor of foxtail millet. Due to the advantageous genetic characteristics of S. viridis, it is a model species for C4 plants. However, S. viridis has seriously spread to the agricultural system around the world because of its wide adaptability. This study is aimed to understand the distribution of S. viridis in Taiwan, and also to investigate the genetic diversity and relationships among different wild populations. A total of 141 S. viridis collected at 10 sites with sampling sizes ranging from 8 to 24 plants in Taiwan were analyzed by 13 highly polymorphic SSR markers, and 6.1 alleles per locus were detected in our study. The relationships of collected S. viridis mostly corresponded to its distribution in different parts of Taiwan revealed by PCoA and phylogenetic tree. Similarly, the results for population structure showed the significance of collecting site or geographical factors. Finally, the extent of gene flow was studied with the genetic differentiation (FST) and Nm values, and two S. viridis populations were found to significantly contain the existence of gene-flow events. In conclusion, S. viridis showed a pattern of low diversity and heterozygosity within a population, but high differentiation among populations because of its selfing attribute and the barriers of sea and mountain range for gene flow. In addition, the founder effect may be the other reason for this pattern of population genetic structure.


Author(s):  
V. Kumar ◽  
I. Effertz ◽  
T. Lambert ◽  
R. Liu ◽  
B. Bean
Keyword(s):  

Author(s):  
Valeriy Ivanovich Zhuzhukin ◽  
Tatyana Vladimirovna Rodina ◽  
Alexander Nikolaevich Astashov ◽  
Vasiliy Borisovich Khronyuk ◽  
Kirill Alekseevich Pronudin

The article presents the results of analysis of the biochemical composition, output of gross energy, biomass and grain of 21 chumiz varieties. In the course of experiments, it was found that the range of variation in the protein content in the biomass is from 5.63to 12.91%. More than 11 % of protein is contained in the dry biomass of the following varieties: k-59, k-73, k-1074, k-2029, k-2542, k-3155, Stachumi-3. The fat content in the biomass varies in the range of 1,01…3,48 %. The highest fat content (>2,5 %) was found in cultivars: k-59, k-2029, k-2542, k-3683, Stachumi-3,UVES.Variability of other indicators of biomass quality in chumiz cultivars was found in the following limits: fiber – 30.77...39.06 %; ash – 5.20...13.94 %; BEV – 35.54...54.07 %. The variation of grain quality indicators is set within the following limits: protein – 11.02...15.36 %; fat – 3.26...6.46 %; fiber – 4.77...9.50 %; ash- 1.85...3.26 %; BEV – 68.83...74.30 %. More than 14 % of the protein in the grain was found in cultivars: k-73, k-941, k-982, k-2029, k-2566, k-2774. A relatively high fat content (>5,0 %) was found in the grain of varietals: k-2542, k-2598, k-2608, k-3155, k-3683, Stachumi-1, UVES. The yield of raw biomass varied in the range of 12.57...26.83 t/ha, and grain 1.00...4.10 t/ha. The output of gross energy per 1 t of biomass in the phase of milk ripeness varies in the range of 3.98…4.31 GJ, and grain 16.37…17.53 GJ. The yield of protein per 1 GJ of gross biomass energy varies in the range of 4.29…7.69 kg, and grain – 6.4…8.05 kg. The highest protein yield per 1 GJ of gross biomass energy was found in cultivars (k-59, k-73, k-1074, k-2029, k-2542, Stachumi-3).


Weed Science ◽  
2020 ◽  
pp. 1-23
Author(s):  
Tao Li ◽  
Jiequn Fan ◽  
Zhenguan Qian ◽  
Guohui Yuan ◽  
Dandan Meng ◽  
...  

Abstract The use of a corn-earthworm coculture (CE) system is an eco-agricultural technology that has been gradually extended due to its high economic output and diverse ecological benefits for urban agriculture in China. However, the effect of CE on weed occurrence has received little attention. A five-year successive experiment (2015 to 2019) was conducted to compare weed occurrence in CE and a corn (Zea mays L.) monoculture (CM). The results show that CE significantly decreased weed diversity, the dominance index, total weed density and biomass, but increased the weed evenness index. The five-year mean number of weed species per plot was 8.4 in CE and 10.7 in CM. Compared to those in CM, the five-year mean density and biomass of total weeds in CE decreased by 59.2% and 66.6%, respectively. The effect of CE on weed occurrence was species specific. The mean density of large crabgrass [Digitaria sanguinalis (L.) Scop.], green foxtail [Setaria viridis (L.) Beauv.], goosegrass [Eleusine indica (L.) Gaertn.], and common purslane (Portulaca oleracea L.) in CE decreased by 94.5, 78.1, 75.0, and 45.8%, whereas the mean biomass decreased by 96.2, 80.8, 76.9, and 41.4%, respectively. Our study suggests that the use of CE could suppress weed occurrence and reduce herbicide inputs in agriculture.


Sign in / Sign up

Export Citation Format

Share Document