INFLUENCE OF TEXTURE AND MANAGEMENT PRACTICES ON THE FORMS AND DISTRIBUTION OF SOIL PHOSPHORUS

1987 ◽  
Vol 67 (1) ◽  
pp. 147-163 ◽  
Author(s):  
J. W. B. STEWART ◽  
I. P. O'HALLORAN ◽  
R. G. KACHANOSKI

Changes in soil phosphorus (P) forms, as determined by a sequential fractionation procedure, were used to assess the influence of soil texture and management practices on the forms and distribution of soil P in a Brown Chernozemic loam soil at Swift Current, Saskatchewan. Significant proportions of the variability of all P fractions except residual-P could be attributed to changes in sand content. Changes in the forms and distribution of soil P with decreasing sand content followed patterns similar to those associated with a weathering sequence. The proportion of total soil P in inorganic and organic extractable forms that were extractable sequentially with anion exchange resin (resin-Pi), sodium bicarbonate (bicarb-Pi and -Po), and sodium hydroxide (NaOH-Pi and -Po) increased with decreasing sand content. Acid-extractable inorganic P (HCl-Pi) was the only P fraction positively correlated with sand content. The presence of a crop increased the proportion of soil P present as the more labile organic-P fractions (bicarb-Po and NaOH-Po) but not as total soil organic P (soil-Po). The presence of a crop also increased the proportion of soil P present as the labile inorganic fractions (resin-Pi and bicarb-Pi), possibly due to a decrease in soil pH. Application of inorganic-P fertilizer caused significant increases in the proportion of soil P as these labile inorganic-P fractions (resin-Pi and bicarb-Pi) and as total soil organic-P (soil-Po), but did not affect the more labile organic-P fractions. Key words: P fractionation, labile P, organic P, inorganic P, texture, management practices

2021 ◽  
Vol 3 ◽  
pp. e3
Author(s):  
Xin Jin ◽  
Changlu Hu ◽  
Asif Khan ◽  
Shulan Zhang ◽  
Xueyun Yang ◽  
...  

Background Diverse phosphorus (P) fractionation procedures presented varying soil P fractions, which directly affected P contents and forms, and their biological availability. Purpose To facilitate the selection of phosphorus (P) fractionation techniques, we compared two procedures based on a long-term experiment on a calcareous soil. Methods The soils containing a gradient P levels were sampled from seven treatments predictor under various long-term fertilizations. The P fractions were then separated independently with both fractionation procedures modified by Tiessen-Moir and Jiang-Gu. Results The results showed that the labile P in Jiang-Gu is significantly lower than that in Tiessen-Moir. The iron and aluminium-bounded P were greater in Jiang-Gu by a maximum of 46 mg kg−1 than Tiessen-Moir. Jiang-Gu fractionation gave similar Ca bounded P to that Tiessen-Moir did at low P level but greater contents at high P level. The two methods extracted much comparable total inorganic P. However, Tiessen-Moir method accounted less total organic P than ignition or Jiang-Gu method (the organic P (Po) estimated by subtract the total inorganic P (Pi) in Jiang-Gu fractionation from the total). P uptake by winter wheat was significantly and positively correlated with all phosphorus fractions in Jiang-Gu; Resin-P, NaHCO3-Pi, D. HCl-P, C. HCl-Pi, NaOH-Po, total-Po in Tiessen-Moir; P fraction categories of Ca-P, Fe & Al-P and total-Pi in both fractionations. Path coefficients indicated that Ca2-P in Jiang-Gu, NaHCO3-Pi and D. HCl-P in Tiessen-Moir had the higher and more significant direct contributions to P uptake among P fractions measured. Conclusions Our results suggested that Jiang-Gu procedure is a better predictor in soil P fractionation in calcareous soils, although it gives no results on organic P fractions.


Author(s):  
L.M. Condron ◽  
K.M. Goh

Changes in soil phosphorus (P) associated with the establishment and maintenance of improved ryegrass-clover pasture under different superphosphate fertiliser treatments were examined over a 20-year period (1957-77). Results showed that soil organic P increased with increasing applications of P fertiliser. This represents a dynamic balance between rates of organic P addition and breakdown in the soil. This balance is reached slowly and may be significantly altered only by drastic changes in land use. In annually fertilised soils, amounts of inorganic P increased with time. However, the potential utilisation of this residual inorganic P is limited by its apparent stability in the soil. Keywords grazed pasture, irrigation, fertiliser P, soil inorganic P, soil organic P, soil P fractionation


2019 ◽  
Vol 99 (3) ◽  
pp. 292-304
Author(s):  
Tandra D. Fraser ◽  
Derek H. Lynch ◽  
Ivan P. O’Halloran ◽  
R. Paul Voroney ◽  
Martin H. Entz ◽  
...  

Soil phosphorus (P) availability may be impacted by management practices, thereby affecting plant P uptake and plant response to P amendments. The aim of this study was to determine the effects of long-term management on soil P pools and to assess the response of P bioavailability, plant growth, and P uptake to mineral versus manure P treatments. Soils were collected from plots under organic (ORG), organic with composted manure (ORG + M), conventional (CONV), and restored prairie (PRA) management. Italian ryegrass (Lolium multiflorum L.) seedlings were grown in the greenhouse for 106 d in soils amended with various rates of manure or mineral P. The ORG soil had lower concentrations of labile P (resin-P and NaHCO3-P) compared with the CONV and PRA soils, as determined by sequential P fractionation prior to planting. Ryegrass biomass (root + shoot) and shoot P uptake from soils receiving no P were significantly lower for the ORG than all other management systems. Although apparent P use efficiency of the whole plant was increased by low P rate in the ORG management system, the source of applied P, manure > mineral, only influenced Olsen test P.


Soil Research ◽  
2020 ◽  
Vol 58 (3) ◽  
pp. 289
Author(s):  
L. B. Braos ◽  
A. C. T. Bettiol ◽  
L. G. Di Santo ◽  
M. E. Ferreira ◽  
M. C. P. Cruz

The evaluation of phosphorus (P) transformations in soil after application of manure or mineral P can improve soil management and optimise P use by plants. The objectives of the present study were to assess organic and inorganic P forms in two soils treated with dairy manure and triple superphosphate and to establish relationships between soil P fraction levels and P availability. Soil organic and inorganic P fractions were quantified using a pot experiment with two soils, a typical Hapludox and an arenic Hapludult, with three types of fertiliser treatments applied (no fertiliser application, application of dairy manure, and application of triple superphosphate, by adding 100 mg P dm–3 in the form of fertiliser in the two latter treatments) and four incubation times (15, 45, 90, and 180 days). Inorganic P was fractionated into aluminium-bound, iron-bound, occluded, and calcium-bound P. Organic P was extracted sequentially using sodium bicarbonate, hydrochloric acid, microbial biomass, sodium hydroxide, and residual organic P. After incubation, maize plants were cropped to quantify dry matter yield and absorbed P. Application of dairy manure resulted in a significant increase in most of the organic P fractions, and application of triple superphosphate led to a significant increase in inorganic P fractions. Both fertilisers raised labile organic P fractions in the two soils. The major sinks of P in Hapludox were occluded and fulvic acid-associated P. In contrast, the major sink of P in Hapludult was iron-bound P. The available P levels were stable after application of dairy manure, and decreased with time when fertilised with triple superphosphate. In the Hapludox, the organic P fractions had a significant positive correlation with P uptake by plants. The results suggest that organic P mineralisation plays a more significant role in plant P uptake in the Hapludox soil and inorganic P forms are the main contributors to plant P uptake in the Hapludult soil.


2020 ◽  
Author(s):  
Curt A. McConnell ◽  
Jason P. Kaye ◽  
Armen R. Kemanian

Abstract. Soil phosphorus (P) management remains a critical challenge for agriculture worldwide, and yet we are still unable to predict soil P dynamics as confidently as that of carbon (C) or nitrogen (N). This is due to both the complexity of inorganic P (Pi) and organic P (Po) cycling and the methodological constraints that have limited our ability to trace P dynamics in the soil-plant system. In this review we describe the challenges to building parsimonious, accurate, and useful P models and to explore the potential of some new techniques to advance modeling efforts. To advance our understanding and modeling of P biogeochemistry, research efforts should focus on the following: 1) update the McGill and Cole (1981) model of Po mineralization by clarifying the role and prevalence of “biochemical” and “biological” Po mineralization which we hypothesize are not mutually exclusive and may co-occur along a continuum of Po substrate stoichiometry; 2) further understand the dynamics of phytate, a 6-C compound that can regulate the poorly understood stoichiometry of soil P; 3) explore the effects of C and Po saturation on P sorption and Po mineralization; and 4) resolve discrepancies between hypotheses about P cycling and the methods used to test these hypotheses.


1985 ◽  
Vol 65 (4) ◽  
pp. 651-665 ◽  
Author(s):  
T. L. ROBERTS ◽  
J. W. B. STEWART ◽  
J. R. BETTANY

A sequential extraction procedure was used to determine phosphorus fractions (resin, bicarbonate, hydroxide, sonicated hydroxide, acid and acid-peroxide digest with separate organic and inorganic P determinations) in surface and subsurface horizons taken from the upper, mid- and lower slope positions of four catenas (representing Brown, Dark Brown and Black Chernozemic soils, and a Luvisolic soil) which encompass a narrow environmental gradient of climate (annual precipitation: 300–475 mm) and vegetation. Trends in the local distribution of organic and inorganic soil P between upper and lower slope positions in any one catena were similar to the regional distribution patterns across all soil zones. Concentration of organic P, in both the surface and subsurface horizons, increased from the upper to the lower slope positions and from the Brown to the Black soils, while inorganic P decreased. The largest single organic fraction (hydroxide extractable) accounted for up to 22 and 17% of the total P (surface and subsurface horizons, respectively). Acid extractable P dominated the inorganic fractions, accounting for 40–63% of the total P (surface and subsurface horizons, respectively). The distribution of organic P along the catenas and among the soil zones was related to the transformations of inorganic P caused by differences in weathering intensity between slope positions and across the Province. Key words: Catena, climo-toposequence, sequential P extraction


Soil Research ◽  
1995 ◽  
Vol 33 (2) ◽  
pp. 311 ◽  
Author(s):  
A Paniagua ◽  
MJ Mazzarino ◽  
D Kass ◽  
L Szott ◽  
C Fernandez

The organic P pool is usually considered a major source of available P in high P-fixing soils of the tropics. Agricultural management practices which maintain or increase soil organic P(o) contents would, therefore, help maintain soil fertility over time. The effects of organic additions and P fertilization on soil P fractions and yield of maize were examined after a 10 years rotation involving beans and maize on a tropical volcanic soil. Five maize cropping systems were analysed: (1) monoculture, alley cropping with Erythrina poeppigiana, alley cropping with Gliricidia sepium and monoculture mulched with E. poeppigiana prunings, all treatments fertilized with 20 kg P ha-1 and 54 kg K ha-1; and (2) monoculture mulched with E. poeppigiana prunings without fertilization. Soil P fractions were determined by a sequential extraction procedure. Little differences were found in size and distribution of P pools among treatments fertilized with P regardless of whether they received organic amendments. Mulching without P fertilization showed the lowest values of NaOH-Po (16% v. 22% of total P) and labile Pi, (2.4% v. 4.8%). These results suggest that (1) organic P accretion and mineralization is strongly dependent on inorganic fertilization; and (2) organic additions without synthetic fertilizers may be decreasing the organic P pool, and consequently the soil P fertility. Nevertheless, absolute values of labile Pi (resin+NaHCO3-Pi were quite high (52 mg kg-1) in this treatment, and yields of maize were among the highest obtained during most of the 10 years of cultivation.


2021 ◽  
Author(s):  
Karst J. Schaap ◽  
Lucia Fuchslueger ◽  
Marcel R. Hoosbeek ◽  
Florian Hofhansl ◽  
Nathielly Pires Martins ◽  
...  

Abstract Purpose The tropical phosphorus cycle and its relation to soil phosphorus (P) availability are a major uncertainty in projections of forest productivity. In highly weathered soils with low P concentrations, plant and microbial communities depend on abiotic and biotic processes to acquire P. We explored the seasonality and relative importance of drivers controlling the fluctuation of common P pools via processes such as litter production and decomposition, and soil phosphatase activity. Methods We analyzed intra-annual variation of tropical soil phosphorus pools using a modified Hedley sequential fractionation scheme. In addition, we measured litterfall, the mobilization of P from litter and soil extracellular phosphatase enzyme activity and tested their relation to fluctuations in P- fractions. Results Our results showed clear patterns of seasonal variability of soil P fractions during the year. We found that modeled P released during litter decomposition was positively related to change in organic P fractions, while net change in organic P fractions was negatively related to phosphatase activities in the top 5 cm. Conclusion We conclude that input of P by litter decomposition and potential soil extracellular phosphatase activity are the two main factors related to seasonal soil P fluctuations, and therefore the P economy in P impoverished soils. Organic soil P followed a clear seasonal pattern, indicating tight cycling of the nutrient, while reinforcing the importance of studying soil P as an integrated dynamic system in a tropical forest context.


2020 ◽  
Vol 17 (21) ◽  
pp. 5309-5333
Author(s):  
Curt A. McConnell ◽  
Jason P. Kaye ◽  
Armen R. Kemanian

Abstract. Soil phosphorus (P) management remains a critical challenge for agriculture worldwide, and yet we are still unable to predict soil P dynamics as confidently as that of carbon (C) or nitrogen (N). This is due to both the complexity of inorganic P (Pi) and organic P (Po) cycling and the methodological constraints that have limited our ability to trace P dynamics in the soil–plant system. In this review, we describe the challenges for building parsimonious, accurate, and useful biogeochemical models that represent P dynamics and explore the potential of new techniques to usher P biogeochemistry research and modeling forward. We conclude that research efforts should focus on the following: (1) updating the McGill and Cole (1981) model of Po mineralization by clarifying the role and prevalence of biochemical and biological Po mineralization, which we suggest are not mutually exclusive and may co-occur along a continuum of Po substrate stoichiometry; (2) further understanding the dynamics of phytate, a six C compound that can regulate the poorly understood stoichiometry of soil P; (3) exploring the effects of C and Po saturation on P sorption and Po mineralization; and (4) resolving discrepancies between hypotheses about P cycling and the methods used to test these hypotheses.


Author(s):  
K.W. Perrott

Changes in phosphorus (P) fractions of unfertilised and fertilised (superphosphate) soil were investigated over five years at a hill country site near Te Kuiti. Only soil inorganic P (Pi) reserves were utilised for plant uptake when superphosphate was withheld at the site. Immobilisation of P as soil organic P (PO) contributed to depletion of the soil Pi reserves during the first two years of this trial. Where superphosphate was applied, immobilisation of P as PO amounted to about 25% of applied P during the five years measurements were made. Changes in soil P fractions indicated that all forms of soil Pi were utilised when superphosphate was withheld. These included readily available Pi, Al- Pi, Fe-Pi, and residual phosphate rock from previous fertiliser applications. Depletion of the phosphate rock residues in the soil also occurred where superphosphate was applied and appears to have been completed within about two years. The phosphate rock residues had probably accumulated because of the relatively high amounts of unacidulated phosphate rock in superphosphate manufactured before 1983. Accumulation of Po associated with humic acid, or adsorbed on surfaces of hy drous oxides of Al and Fe, occurred in both fertilised and unfertilised soils. The more labile forms of PO also increased in the fertilised soil. Keywords inorganic phosphorus, organic phosphorus, phosphorus immobilisation, soil phosphorus, soil phosphorus fractions, soil phosphorus utilisation.


Sign in / Sign up

Export Citation Format

Share Document