scholarly journals Evaluation of Vegetable Protein Sources on Nursery Pig Performance in a Commercial Environment

Author(s):  
Rafe Q. Royall ◽  
Joel M DeRouchey ◽  
Mike D. Tokach ◽  
Jason C. Woodworth ◽  
Robert D. Goodband ◽  
...  
Author(s):  
Marcio Antonio Dornelles Goncalves ◽  
Joel M DeRouchey ◽  
Steven S Dritz ◽  
Michael D Tokach ◽  
Robert D Goodband ◽  
...  

Author(s):  
Kyle E Jordan ◽  
Marcio Antonio Dornelles Goncalves ◽  
Michael D Tokach ◽  
Steven S Dritz ◽  
Robert D Goodband ◽  
...  

Author(s):  
M. D. Tokach ◽  
S. S. Dritz ◽  
J. M. DeRouchey ◽  
J. C. Woodworth ◽  
R. D. Goodband

2018 ◽  
Vol 3 (1) ◽  
pp. 378-383 ◽  
Author(s):  
Aaron M Jones ◽  
Fangzhou Wu ◽  
Jason C Woodworth ◽  
Steve S Dritz ◽  
Mike D Tokach ◽  
...  

Abstract Increasing dietary electrolyte balance (dEB) has been reported to linearly improve pig growth performance up to approximately 200 to 250 mEq/kg. However, recent data indicate that increasing dietary dEB reduced growth performance of nursery pigs. To attempt to solve this discrepancy, a total of 2,880 weanling pigs (327 × 1,050; PIC, Hendersonville, TN; 5.2 kg initial BW) were used to determine the effects of increasing dEB on nursery pig performance. Pens of pigs were blocked by BW and gender on arrival. Within block, pens were randomly assigned to one of four dietary treatments. There were 30 pigs per pen (60 pigs per double-sided feeder) and 12 replications (feeder) per treatment. Dietary treatments were fed in two phases. The phase 1 diet was based on corn–soybean meal, contained dried distillers grains with soblubles (DDGS), spray-dried whey, and specialty protein sources, and was fed from days 0 to 8. The phase 2 (days 8 to 21) diets contained corn, soybean meal, and DDGS with reduced amounts of specialty protein sources. Dietary electrolyte balance was determined using the following equation: dEB = [(Na × 434.98) + (K × 255.74) − (Cl × 282.06)] mEq/kg. The dEB of the four phase 1 diets were 84, 137, 190, and 243 mEq/kg, and dEB of the four phase 2 diets were 29, 86, 143, and 199 mEq/kg. After feeding experimental diets for 21 day, a common, commercial corn–soybean meal diet was fed to all pigs from days 21 to 35 and contained a dEB of 257 mEq/kg. During days 0 to 8, increasing dEB increased (quadratic, P < 0.05) ADG, ADFI, and G:F. From days 8 to 21, increasing dEB improved ADG (quadratic, P = 0.022) and ADFI (linear, P = 0.001), resulting in an improvement (quadratic, P = 0.001) in G:F. Overall (days 0 to 21), increasing dEB increased (linear, P < 0.05) ADG, ADFI, and improved (quadratic, P < 0.001) G:F. When a common diet was fed to all pigs from days 21 to 35, there was a linear reduction in ADG and G:F with increasing dietary dEB, but no effect of ADFI. For the overall nursery period (days 0 to 35), increasing dEB from days 0 to 21 increased (linear, P < 0.001) ADG and final BW, which was the result of increased (quadratic, P < 0.05) G:F and marginally greater (linear, P = 0.077) ADFI. In conclusion, increasing dietary dEB up to 243 and 199 mEq/kg (in phases 1 and 2, respectively) in nursery diets improved growth performance of weanling pigs.


Author(s):  
C N Groesbeck ◽  
Michael D Tokach ◽  
Joel M DeRouchey ◽  
Robert D Goodband ◽  
Jim L Nelssen ◽  
...  

2005 ◽  
Author(s):  
David R. Stender ◽  
Jerry Weiss ◽  
Dennis DeWitt ◽  
Colin D. Johnson ◽  
Kenneth J Stalder ◽  
...  

2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 100-101
Author(s):  
Carson M De Mille ◽  
Nicholas K Gabler

Abstract Weaning induces major structural and function changes to the small intestine of pigs and they transition from milk to solid feedstuffs. Thus, the objective of this study was to determine how intestinal morphology and function markers relate to feed intake and growth rates of nursery pig. Forty-eight weaned pigs (5.63 ± 0.50 kg) were randomly selected, individually penned and fed a common diet. Pig bodyweights and feed intake were determined at d 2, 7, and 21. At each time point, 16 pigs were randomly selected and euthanized. Sections of ileum were assessed for morphology [villus height (VH), crypt depth (CD) and VH:CD] and ex vivo transepithelial resistance (TER), macromolecule permeability (FD4), and active transport of glucose and glutamine via modified Ussing chambers. Within each period (d 0–2, 0–7, and 0–21), Pearson correlations were performed between ADG, ADFI, VH, VH:CD, TER, FD4 and active transport of glucose and glutamine. At d 2 post-weaning, no correlations (P > 0.05) were observed between performance and intestinal variables. By d 7, moderate positive correlations between VH and ADFI (r = 0.69, P = 0.005), VH and ADG (r = 0.68, P = 0.006) were reported. At 21 d post-weaning, moderate positive correlations were still observed for VH and ADFI (r = 0.55, P = 0.026) and between VH and ADG (r = 0.51, P = 0.042). Interestingly, ADFI and ADG tended to be negatively correlated with active glucose transport (r = -0.45, P = 0.083 and r = -0.47, P = 0.064, respectively) and active glutamine transport (r = -0.45, P = 0.083 and r = -0.46, P = 0.073, respectively). Markers of ileal integrity (TER and FD4) were not correlated with ADG or ADFI at any time point. Altogether, these data highlight the importance of intestinal morphology on early nursery pig performance.


2017 ◽  
Vol 95 (suppl_2) ◽  
pp. 138-139
Author(s):  
H. E. Williams ◽  
J. C. Woodworth ◽  
J. M. DeRouchey ◽  
S. S. Dritz ◽  
M. D. Tokach ◽  
...  

2017 ◽  
Vol 95 (11) ◽  
pp. 5030-5039 ◽  
Author(s):  
J. R. Koepke ◽  
R. S. Kaushik ◽  
W. R. Gibbons ◽  
M. Brown ◽  
C. L. Levesque

Sign in / Sign up

Export Citation Format

Share Document