scholarly journals Generating Functions for Bessel Functions

1959 ◽  
Vol 11 ◽  
pp. 148-155 ◽  
Author(s):  
Louis Weisner

On replacing the parameter n in Bessel's differential equation1.1by the operator y(∂/∂y), the partial differential equation Lu = 0 is constructed, where1.2This operator annuls u(x, y) = v(x)yn if, and only if, v(x) satisfies (1.1) and hence is a cylindrical function of order n. Thus every generating function of a set of cylindrical functions is a solution of Lu = 0.It is shown in § 2 that the partial differential equation Lu = 0 is invariant under a three-parameter Lie group. This group is then applied to the systematic determination of generating functions for Bessel functions, following the methods employed in two previous papers (4; 5).

1991 ◽  
Vol 28 (01) ◽  
pp. 1-8 ◽  
Author(s):  
J. Gani ◽  
Gy. Michaletzky

This paper considers a carrier-borne epidemic in continuous time with m + 1 > 2 stages of infection. The carriers U(t) follow a pure death process, mixing homogeneously with susceptibles X 0(t), and infectives Xi (t) in stages 1≦i≦m of infection. The infectives progress through consecutive stages of infection after each contact with the carriers. It is shown that under certain conditions {X 0(t), X 1(t), · ··, Xm (t) U(t); t≧0} is an (m + 2)-variate Markov chain, and the partial differential equation for its probability generating function derived. This can be solved after a transfomation of variables, and the probability of survivors at the end of the epidemic found.


Author(s):  
J. R. Cannon ◽  
Yanping Lin ◽  
Shingmin Wang

AbstractThe authors consider in this paper the inverse problem of finding a pair of functions (u, p) such thatwhere F, f, E, s, αi, βi, γi, gi, i = 1, 2, are given functions.The existence and uniqueness of a smooth global solution pair (u, p) which depends continuously upon the data are demonstrated under certain assumptions on the data.


1980 ◽  
Vol 87 (3) ◽  
pp. 515-521
Author(s):  
Albert E. Heins

In a recent paper, hereafter referred to as I (1) we derived two alternate forms for the fundamental solution of the axially symmetric wave equation. We demonstrated that for α > 0, the fundamental solution (the so-called free space Green's function) of the partial differential equationcould be written asif b > rorif r > b.


1922 ◽  
Vol 41 ◽  
pp. 76-81
Author(s):  
E. T. Copson

Riemann's method of solution of a linear second order partial differential equation of hyperbolic type was introduced in his memoir on sound waves. It has been used by Darboux in discussing the equationwhere α, β, γ are functions of x and y.


1972 ◽  
Vol 15 (2) ◽  
pp. 229-234
Author(s):  
Julius A. Krantzberg

We consider the initial-boundary value problem for the parabolic partial differential equation1.1in the bounded domain D, contained in the upper half of the xy-plane, where a part of the x-axis lies on the boundary B(see Fig.1).


1947 ◽  
Vol 43 (3) ◽  
pp. 348-359 ◽  
Author(s):  
F. G. Friedlander

The ordinary one-dimensional wave equationhas special integrals of the formwhich satisfy the first-order equationsrespectively, and are often called progressive waves, or progressive integrals, of (1·1). The straight linesin an xt-plane are the characteristics of (1·1). It follows from (1·2) that progressive integrals of (1·1) are constant on some particular characteristic, and are characterized by this property.


Sign in / Sign up

Export Citation Format

Share Document