scholarly journals A Note on Continued Fractions

1960 ◽  
Vol 12 ◽  
pp. 303-308 ◽  
Author(s):  
A. Oppenheim

Any real number y leads to a continued fraction of the type(1)where ai, bi are integers which satisfy the inequalities(2)by means of the algorithm(3)the a's being assigned positive integers. The process terminates for rational y; the last denominator bk satisfying bk ≥ ak + 1. For irrational y, the process does not terminate. For a preassigned set of numerators ai ≥ 1, this C.F. development of y is unique; its value being y.Bankier and Leighton (1) call such fractions (1), which satisfy (2), proper continued fractions. Among other questions, they studied the problem of expanding quadratic surds in periodic continued fractions. They state that “it is well-known that not only does every periodic regular continued fraction represent a quadratic irrational, but the regular continued fraction expansion of a quadratic irrational is periodic.

Author(s):  
K. R. Matthews ◽  
R. F. C. Walters

Introduction. Continued fractions of the form are called Hurwitzian if b1, …, bh, are positive integers, ƒ1(x), …, ƒk(x) are polynomials with rational coefficients which take positive integral values for x = 0, 1, 2, …, and at least one of the polynomials is not constant. f1(x), …, fk(x) are said to form a quasi-period.


2021 ◽  
Vol 105 (564) ◽  
pp. 442-449
Author(s):  
Kantaphon Kuhapatanakul ◽  
Lalitphat Sukruan

An infinite simple continued fraction representation of a real number α is in the form $$\eqalign{& {a_0} + {1 \over {{a_1} + {1 \over {{a_2} + {1 \over {{a_3} + {1 \over {}}}}}}}} \cr & \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \ddots \cr} $$ where $${a_0}$$ is an integer, and $${a_i}$$ are positive integers for $$i \ge 1$$. This is often written more compactly in one of the following ways: $${a_0} + {1 \over {{a_1} + }}{1 \over {{a_2} + }}{1 \over {{a_3} + }} \ldots \;{\rm{or}}\;\left[ {{a_0};\;{a_1},\;{a_2},\;{a_3} \ldots } \right]$$ .


2016 ◽  
Vol 12 (05) ◽  
pp. 1329-1344
Author(s):  
Michael O. Oyengo

A well-known theorem of Lagrange states that the simple continued fraction of a real number [Formula: see text] is periodic if and only if [Formula: see text] is a quadratic irrational. We examine non-periodic and non-simple continued fractions formed by two interlacing geometric series and show that in certain cases they converge to quadratic irrationalities. This phenomenon is connected with certain sequences of polynomials whose properties we examine further.


2018 ◽  
Vol 2019 (19) ◽  
pp. 6136-6161 ◽  
Author(s):  
Verónica Becher ◽  
Sergio A Yuhjtman

Abstract We give a construction of a real number that is normal to all integer bases and continued fraction normal. The computation of the first n digits of its continued fraction expansion performs in the order of n4 mathematical operations. The construction works by defining successive refinements of appropriate subintervals to achieve, in the limit, simple normality to all integer bases and continued fraction normality. The main difficulty is to control the length of these subintervals. To achieve this we adapt and combine known metric theorems on continued fractions and on expansions in integers bases.


Author(s):  
Jingcheng Tong

AbstractLet ξ be an irrational number with simple continued fraction expansion be its ith convergent. Let Mi = [ai+1,…, a1]+ [0; ai+2, ai+3,…]. In this paper we prove that Mn−1 < r and Mn R imply which generalizes a previous result of the author.


2018 ◽  
Vol 107 (02) ◽  
pp. 272-288
Author(s):  
TOPI TÖRMÄ

We study generalized continued fraction expansions of the form $$\begin{eqnarray}\frac{a_{1}}{N}\frac{}{+}\frac{a_{2}}{N}\frac{}{+}\frac{a_{3}}{N}\frac{}{+}\frac{}{\cdots },\end{eqnarray}$$ where $N$ is a fixed positive integer and the partial numerators $a_{i}$ are positive integers for all $i$ . We call these expansions $\operatorname{dn}_{N}$ expansions and show that every positive real number has infinitely many $\operatorname{dn}_{N}$ expansions for each $N$ . In particular, we study the $\operatorname{dn}_{N}$ expansions of rational numbers and quadratic irrationals. Finally, we show that every positive real number has, for each $N$ , a $\operatorname{dn}_{N}$ expansion with bounded partial numerators.


1987 ◽  
Vol 30 (2) ◽  
pp. 295-299 ◽  
Author(s):  
M. J. Jamieson

The infinite continued fractionin whichis periodic with period l and is equal to a quadratic surd if and only if the partial quotients, ak, are integers or rational numbers [1]. We shall also assume that they are positive. The transformation discussed below applies only to pure periodic fractions where n is zero.


2018 ◽  
Vol 61 (1) ◽  
pp. 283-293
Author(s):  
Poj Lertchoosakul ◽  
Radhakrishnan Nair

AbstractLet 𝔽q be the finite field of q elements. An analogue of the regular continued fraction expansion for an element α in the field of formal Laurent series over 𝔽q is given uniquely by $$\alpha = A_0(\alpha ) + \displaystyle{1 \over {A_1(\alpha ) + \displaystyle{1 \over {A_2(\alpha ) + \ddots }}}},$$ where $(A_{n}(\alpha))_{n=0}^{\infty}$ is a sequence of polynomials with coefficients in 𝔽q such that deg(An(α)) ⩾ 1 for all n ⩾ 1. In this paper, we provide quantitative versions of metrical results regarding averages of partial quotients. A sample result we prove is that, given any ϵ > 0, we have $$\vert A_1(\alpha ) \ldots A_N(\alpha )\vert ^{1/N} = q^{q/(q - 1)} + o(N^{ - 1/2}(\log N)^{3/2 + {\rm \epsilon }})$$ for almost everywhere α with respect to Haar measure.


1969 ◽  
Vol 21 ◽  
pp. 808-816 ◽  
Author(s):  
J. R. Kinney ◽  
T. S. Pitcher

The modular function Mwas introduced by Perron in (6). M(ξ) (for irrational ξ) is denned by the property that the inequalityis satisfied by an infinity of relatively prime pairs (p, q)for positive d,but by at most a finite number of such pairs for negative d.We will writefor the continued fraction expansion of ξ ∈ (0, 1) and for any finite collection y1,…, ykof positive integers we will writeIt is known (see 6) thatWhere


2017 ◽  
Vol 101 (552) ◽  
pp. 439-448 ◽  
Author(s):  
Martin Bunder ◽  
Joseph Tonien

A continued fraction is an expression of the formThe expression can continue for ever, in which case it is called aninfinitecontinued fraction, or it can stop after some term, when we call it afinitecontinued fraction. For irrational numbers, a continued fraction expansion often reveals beautiful number patterns which remain obscured in their decimal expansion. The interested reader is referred to [1] for a collection of many interesting continued fractions for famous mathematical constants.


Sign in / Sign up

Export Citation Format

Share Document