Federer-Čech Couples

1969 ◽  
Vol 21 ◽  
pp. 842-864
Author(s):  
Micheal Dyer

In (5),I considered two-term conditions in π-exact couples, of which the exact couple of Federer (7) is an example. Let M(X, Y)be the space of all maps from X to Y with the compact-open topology. Our aim in this paper is to construct a π-exact couple , where Xis a finite-dimensional (in the sense of Lebesgue) metric space and , a certain (rather large) class of spaces. Specifically, is the class of all topological spaces Xwhich possess the following property (P).(P) Let Y be a (possibly infinite) simplicial complex. There exists x0 ∈ X and y0 ∊ Y such that [X, x0]≃ [Y, y0].In § 5 it will be seen that contains all CW complexes and all metric absolute neighbourhood retracts (ANR)s.

1993 ◽  
Vol 16 (2) ◽  
pp. 259-266 ◽  
Author(s):  
Troy L. Hicks ◽  
B. E. Rhoades

Several important metric space fixed point theorems are proved for a large class of non-metric spaces. In some cases the metric space proofs need only minor changes. This is surprising since the distance function used need not be symmetric and need not satisfy the triangular inequality.


2004 ◽  
Vol 95 (2) ◽  
pp. 305
Author(s):  
Herman Render ◽  
Lothar Rogge

We introduce the new concept of pointwise measurability. It is shown in this paper that a measurable function is measurable at each point and that for a large class of topological spaces the converse also holds. Moreover it can be seen that a function which is continuous at a point is Borel-measurable at this point too. Furthermore the set of measurability points is considered. If the range space is a $\sigma$-compact metric space, then this set is a $G_{\delta}$-set; if the range space is only a Polish space this is in general not true any longer.


1977 ◽  
Vol 23 (1) ◽  
pp. 46-58 ◽  
Author(s):  
A. R. Bednarek ◽  
Eugene M. Norris

SynopsisIn this paper we define two semigroups of continuous relations on topological spaces and determine a large class of spaces for which Banach-Stone type theorems hold, i.e. spaces for which isomorphism of the semigroups implies homeomorphism of the spaces. This class includes all 0-dimensional Hausdorff spaces and all those completely regular Hausdorff spaces which contain an arc; indeed all of K. D. Magill's S*-spaces are included. Some of the algebraic structure of the semigroup of all continuous relations is elucidated and a method for producing examples of topological semigroups of relations is discussed.


Author(s):  
Yves Félix ◽  
Stephen Halperin ◽  
Jean-Claude Thomas

2017 ◽  
Vol 20 (K2) ◽  
pp. 107-116
Author(s):  
Diem Thi Hong Huynh

We show first the definition of variational convergence of unifunctions and their basic variational properties. In the next section, we extend this variational convergence definition in case the functions which are defined on product two sets (bifunctions or bicomponent functions). We present the definition of variational convergence of bifunctions, icluding epi/hypo convergence, minsuplop convergnece and maxinf-lop convergence, defined on metric spaces. Its variational properties are also considered. In this paper, we concern on the properties of epi/hypo convergence to apply these results on optimization proplems in two last sections. Next we move on to the main results that are approximations of typical and important optimization related problems on metric space in terms of the types of variational convergence are equilibrium problems, and multiobjective optimization. When we applied to the finite dimensional case, some of our results improve known one.


1970 ◽  
Vol 22 (6) ◽  
pp. 1129-1132
Author(s):  
William J. Gilbert

Let cat be the Lusternik-Schnirelmann category structure as defined by Whitehead [6] and let be the category structure as defined by Ganea [2],We prove thatandIt is known that w ∑ cat X = conil X for connected X. Dually, if X is simply connected,1. We work in the category of based topological spaces with the based homotopy type of CW-complexes and based homotopy classes of maps. We do not distinguish between a map and its homotopy class. Constant maps are denoted by 0 and identity maps by 1.We recall some notions from Peterson's theory of structures [5; 1] which unify the definitions of the numerical homotopy invariants akin to the Lusternik-Schnirelmann category.


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1891
Author(s):  
Orhan Göçür

Do the topologies of each dimension have to be same and metrizable for metricization of any space? I show that this is not necessary with monad metrizable spaces. For example, a monad metrizable space may have got any indiscrete topologies, discrete topologies, different metric spaces, or any topological spaces in each different dimension. I compute the distance in real space between such topologies. First, the passing points between different topologies is defined and then a monad metric is defined. Then I provide definitions and some properties about monad metrizable spaces and PAS metric spaces. I show that any PAS metric space is also a monad metrizable space. Moreover, some properties and some examples about them are presented.


Author(s):  
M. Maiti ◽  
A. C. Babu

AbstractJ. B. Diaz and F. T. Metcalf established some results concerning the structure of the set of cluster points of a sequence of iterates of a continuous self-map of a metric space. In this paper it is shown that their conclusions remain valid if the distance function in their inequality is replaced by a continuous function on the product space. Then this idea is extended to some other mappings and to uniform and general topological spaces.


1980 ◽  
Vol 32 (4) ◽  
pp. 783-803
Author(s):  
Michael A. Penna

Every finite simplicial complex has a tangent bundle in the category of simplicial bundles (see [9]). The goal of this paper is to classify simplicial bundles, and, as an application of this result, to construct Euler classes for a large class of combinatorial manifolds. This construction is closely related to [3] and [4].


Author(s):  
I. N. Kostin

The problem of approximation of attractors for semidynamical systems (SDSs) in a metric space is studied. Let some (exact) SDS possessing an attractor M be inaccurately defined, i.e. let another (approximate) SDS, which is close in some sense to the exact one, be given. The problem is to construct a set , which is close to M in the Hausdorff metric.The suggested procedure for constructing is finite, which makes it possible to use it in computations. The results obtained are suitable for numerical approximation of attractors for a rather large class of semidynamical systems, including ones generated by the Lorenz equations and the Navier–Stokes equations.


Sign in / Sign up

Export Citation Format

Share Document