Finite Groups whose Powers have no Countably Infinite Factor Groups

1969 ◽  
Vol 21 ◽  
pp. 965-969 ◽  
Author(s):  
M. J. Billis

Let P be the class of all finite groups G whose powers GI have no countably infinite factor groups. Neumann and Yamamuro (1) proved that if G is a finite non-Abelian simple group, then G ∈ P. We generalize this result by proving the following theorem.THEOREM. A finite group G ∈ P if and only if G is perfect2. Inheritance properties ofP.P1. If G ∈ P and N is normal in G, then G/N ∈ P.Proof. Since (G/N)I is isomorphic to GI/NI it is clear that factor groups of (G/N)I are isomorphic to factor groups of GI, and hence finite or uncountable.P2. If G = HK, where H ∈ P and K ∈ P, then G ∈ P.Proof. We show that homomorphic images of GI are either finite or uncountable. Let ϕ be a homomorphism of GI. Then GIϕ = (HK)Iϕ = (HI/KI)ϕ = (HIϕ) (KIϕ). Since HIϕ and KIϕ must be finite or uncountable, the conclusion follows.

2008 ◽  
Vol 07 (06) ◽  
pp. 735-748 ◽  
Author(s):  
BEHROOZ KHOSRAVI

Let G be a finite group. The prime graph Γ(G) of G is defined as follows. The vertices of Γ(G) are the primes dividing the order of G and two distinct vertices p, q are joined by an edge if there is an element in G of order pq. It is proved that if p > 11 and p ≢ 1 (mod 12), then PSL(2,p) is uniquely determined by its prime graph. Also it is proved that if p > 7 is a prime number and Γ(G) = Γ(PSL(2,p2)), then G ≅ PSL(2,p2) or G ≅ PSL(2,p2).2, the non-split extension of PSL(2,p2) by ℤ2. In this paper as the main result we determine finite groups G such that Γ(G) = Γ(PSL(2,q)), where q = pk. As a consequence of our results we prove that if q = pk, k > 1 is odd and p is an odd prime number, then PSL(2,q) is uniquely determined by its prime graph and so these groups are characterizable by their prime graph.


2021 ◽  
Vol 13 (3) ◽  
pp. 59
Author(s):  
Nader Taffach

In this paper, we study the problem of how a finite group can be generated by some subgroups. In order to the finite simple groups, we show that any finite non-abelian simple group can be generated by two Sylow p1 - and p_2 -subgroups, where p_1  and p_2  are two different primes. We also show that for a given different prime numbers p  and q , any finite group can be generated by a Sylow p -subgroup and a q -subgroup.


2016 ◽  
Vol 09 (03) ◽  
pp. 1650054
Author(s):  
E. N. Myslovets

Let [Formula: see text] be a class of finite simple groups. We say that a finite group [Formula: see text] is a [Formula: see text]-group if all composition factors of [Formula: see text] are contained in [Formula: see text]. A group [Formula: see text] is called [Formula: see text]-supersoluble if every chief [Formula: see text]-factor of [Formula: see text] is a simple group. In this paper, properties of mutually permutable products of [Formula: see text]-supersoluble finite groups are studied. Some earlier results on mutually permutable products of [Formula: see text]-supersoluble groups (SC-groups) appear as particular cases.


2019 ◽  
Vol 18 (12) ◽  
pp. 1950230
Author(s):  
Mariya A. Grechkoseeva ◽  
Andrey V. Vasil’ev ◽  
Mariya A. Zvezdina

We refer to the set of the orders of elements of a finite group as its spectrum and say that finite groups are isospectral if their spectra coincide. In this paper, we determine all finite groups isospectral to the simple groups [Formula: see text], [Formula: see text], and [Formula: see text]. In particular, we prove that with just four exceptions, every such finite group is an extension of the initial simple group by a (possibly trivial) field automorphism.


1988 ◽  
Vol 108 (1-2) ◽  
pp. 117-132
Author(s):  
Shigeo Koshitani

SynopsisLet J(FG) be the Jacobson radical of the group algebra FG of a finite groupG with a Sylow 3-subgroup which is extra-special of order 27 of exponent 3 over a field F of characteristic 3, and let t(G) be the least positive integer t with J(FG)t = 0. In this paper, we prove that t(G) = 9 if G has a normal subgroup H such that (|G:H|, 3) = 1 and if H is either 3-solvable, SL(3,3) or the Tits simple group 2F4(2)'.


2021 ◽  
Vol 31 (2) ◽  
pp. 195-211
Author(s):  
X. Y. Chen ◽  
◽  
A. R. Moghaddamfar ◽  
M. Zohourattar ◽  
◽  
...  

In this paper we investigate some properties of the power graph and commuting graph associated with a finite group, using their tree-numbers. Among other things, it is shown that the simple group L2(7) can be characterized through the tree-number of its power graph. Moreover, the classification of groups with power-free decomposition is presented. Finally, we obtain an explicit formula concerning the tree-number of commuting graphs associated with the Suzuki simple groups.


2020 ◽  
Vol 30 (2) ◽  
pp. 172-178
Author(s):  
A. K. Asboei ◽  
◽  
S. S. Salehi ◽  

Let G be a finite group. The main supergraph S(G) is a graph with vertex set G in which two vertices x and y are adjacent if and only if o(x)∣o(y) or o(y)∣o(x). In this paper, we will show that G≅PSL(2,p) or PGL(2,p) if and only if S(G)≅S(PSL(2,p)) or S(PGL(2,p)), respectively. Also, we will show that if M is a sporadic simple group, then G≅M if only if S(G)≅S(M).


2017 ◽  
Vol 16 (11) ◽  
pp. 1750217
Author(s):  
Tianze Li ◽  
Yanjun Liu ◽  
Guohua Qian

Let [Formula: see text] be a finite group and [Formula: see text] be a prime. In this note, we show that if [Formula: see text] and all subgroups of [Formula: see text] of order [Formula: see text] are conjugate, then either [Formula: see text] has a [Formula: see text]-block of defect zero, or [Formula: see text] and [Formula: see text] is a direct product of a simple group [Formula: see text] and an odd order group. This improves one of our previous works.


2020 ◽  
Vol 8 ◽  
Author(s):  
ANDREA LUCCHINI ◽  
CLAUDE MARION ◽  
GARETH TRACEY

For a finite group $G$ , let $d(G)$ denote the minimal number of elements required to generate $G$ . In this paper, we prove sharp upper bounds on $d(H)$ whenever $H$ is a maximal subgroup of a finite almost simple group. In particular, we show that $d(H)\leqslant 5$ and that $d(H)\geqslant 4$ if and only if $H$ occurs in a known list. This improves a result of Burness, Liebeck and Shalev. The method involves the theory of crowns in finite groups.


2006 ◽  
Vol 58 (1) ◽  
pp. 23-38 ◽  
Author(s):  
Vahid Dabbaghian-Abdoly

AbstractLet G be a finite group and χ be an irreducible character of G. An efficient and simple method to construct representations of finite groups is applicable whenever G has a subgroup H such that χH has a linear constituent with multiplicity 1. In this paper we show (with a few exceptions) that if G is a simple group or a covering group of a simple group and χ is an irreducible character of G of degree less than 32, then there exists a subgroup H (often a Sylow subgroup) of G such that χH has a linear constituent with multiplicity 1.


Sign in / Sign up

Export Citation Format

Share Document