Linear Combinations of Univalent Functions with Complex Coefficients

1971 ◽  
Vol 23 (4) ◽  
pp. 712-717 ◽  
Author(s):  
Robert K. Stump

Let U be the class of all normalized analytic functionswhere z ∈ E = {z : |z| < 1} and ƒ is univalent in E. Let K denote the sub-class of U consisting of those members that map E onto a convex domain. MacGregor [2] showed that if ƒ1 ∈ K and ƒ2 ∈ K and if1then F ∉ K when λ is real and 0 < λ < 1, and the radius of univalency and starlikeness for F is .In this paper, we examine the expression (1) when ƒ1 ∈ K, ƒ2 ∈ K and λ is a complex constant and find the radius of starlikeness for such a linear combination of complex functions with complex coefficients.

2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Muhammad Arif ◽  
Miraj Ul Haq ◽  
Jin-Lin Liu

The main objective of the present paper is to define a new subfamily of analytic functions using subordinations along with the newly defined q-Noor integral operator. We investigate a number of useful properties such as coefficient estimates, integral representation, linear combination, weighted and arithmetic means, and radius of starlikeness for this class.


1936 ◽  
Vol 55 ◽  
pp. 42-48 ◽  
Author(s):  
A. C. Aitken

In a series of papers W. F. Sheppard (1912, 1914) has considered the approximate representation of equidistant, equally weighted, and uncorrelated observations under the following assumptions:–(i) The data beingu1, u2, …, un, the representation is to be given by linear combinations(ii) The linear combinations are to be such as would reproduce any set of values that were already values of a polynomial of degree not higher than thekth.(iii) The sum of squared coefficientswhich measures the mean square error ofyi, is to be a minimum for each value ofi.


1976 ◽  
Vol 15 (3) ◽  
pp. 467-473 ◽  
Author(s):  
V.P. Gupta ◽  
P.K. Jain

Let P*(α, β) denote the class of functionsanalytic and univalent in |z| < 1 for whichwhere α є [0, 1), β є (0, 1].Sharp results concerning coefficients, distortion theorem and radius of convexity for the class P*(α, β) are determined. A comparable theorem for the classes C*(α, β) and P*(α, β) is also obtained. Furthermore, it is shown that the class P*(α, ß) is closed under ‘arithmetic mean’ and ‘convex linear combinations’.


Author(s):  
Shalu Yadav ◽  
Kanika Sharma ◽  
V. Ravichandran

A starlike univalent function [Formula: see text] is characterized by [Formula: see text]; several subclasses of starlike functions were studied in the past by restricting [Formula: see text] to take values in a region [Formula: see text] on the right-half plane, or, equivalently, by requiring [Formula: see text] to be subordinate to the corresponding mapping of the unit disk [Formula: see text] to the region [Formula: see text]. The mappings [Formula: see text], [Formula: see text], defined by [Formula: see text] and [Formula: see text] map the unit disk [Formula: see text] to certain nice regions in the right-half plane. For normalized analytic functions [Formula: see text] with [Formula: see text] and [Formula: see text] are subordinate to the function [Formula: see text] for some analytic functions [Formula: see text] and [Formula: see text], we determine the sharp radius for them to belong to various subclasses of starlike functions.


1983 ◽  
Vol 28 (2) ◽  
pp. 207-215 ◽  
Author(s):  
R. Parvatham ◽  
T.N. Shanmugam

Let E = {z: |z| < 1} and let H = {w : regular in E, w(0) = 0, |w(z)| < l, z ∈ E}.Let P(A, B) denote the class of functions in E which can be put in the form (1 + Aw(z))/(1 + Bw(z)), −1 ≤ A < B ≤ 1, w(z) ∈ H. Let S*(A, B) denote the class of functions f(z) of the form such that zf′(z)/f(z) ∈ P(A, B). If f(z) ∈ S*(A, B) and g(z) ∈ S*(C, D) then, in this paper the radius of starlikeness of order β (β ∈ [0, 1]) of the following integral operatoris determined. Conversely, a sharp estimate is obtained for the radius of starlikeness of the class of functionswhere g(z) and F(z) belong to the class S*(A, B).


1957 ◽  
Vol 9 ◽  
pp. 426-434 ◽  
Author(s):  
Walter Rudin

Let K and C be the closure and boundary, respectively, of the open unit disc U in the complex plane. Let be the Banach algebra whose elements are those continuous complex functions on K which are analytic in U, with norm (f ∊ ).


2020 ◽  
Vol 28 (1) ◽  
pp. 85-103
Author(s):  
Waggas Galib Atshan ◽  
S. R. Kulkarni

AbstractIn this paper, we study a class of univalent functions f as defined by making use of the generalized Ruscheweyh derivatives involving a general fractional derivative operator, satisfying{\mathop{\rm Re}\nolimits} \left\{{{{z\left({{\bf{J}}_1^{\lambda,\mu}f\left(z \right)} \right)'} \over {\left({1 - \gamma} \right){\bf{J}}_1^{\lambda,\mu}f\left(z \right) + \gamma {z^2}\left({{\bf{J}}_1^{\lambda,\mu}f\left(z \right)} \right)''}}} \right\} > \beta.A necessary and sufficient condition for a function to be in the class A_\gamma ^{\lambda,\mu,\nu}\left({n,\beta} \right) is obtained. Also, our paper includes linear combination, integral operators and we introduce the subclass A_{\gamma,{c_m}}^{\lambda,\mu,\nu}\left({1,\beta} \right) consisting of functions with negative and fixed finitely many coefficients. We study some interesting properties of A_{\gamma,{c_m}}^{\lambda,\mu,\nu}\left({1,\beta} \right).


2021 ◽  
Vol 29 (2) ◽  
pp. 131-154
Author(s):  
Silvestru Sever Dragomir

Abstract In this paper we establish some two point weighted Taylor’s expansions for analytic functions f : D ⊆ ℂ→ ℂ defined on a convex domain D. Some error bounds for these expansions are also provided. Examples for the complex logarithm and the complex exponential are also given.


1971 ◽  
Vol 12 (1) ◽  
pp. 31-34 ◽  
Author(s):  
Hiroshi Haruki

The following result is well known in the theory of analytic functions; see [1].Theorem A. Suppose that f(z) is an entire function of a complex variable z. Then f(z) satisfies the functional equationwhere z = x + iy (x, y real), if and only if f(z) = aexp(sz), where a is an arbitrary complex constant and s is an arbitrary real constant.


1989 ◽  
Vol 41 (4) ◽  
pp. 642-658
Author(s):  
Richard Fournier

We denote by E the open unit disc in C and by H(E) the class of all analytic functions f on E with f(0) = 0. Let (see [3] for more complete definitions)S = {ƒ ∈ H(E)|ƒ is univalent on E}S0 = {ƒ ∈ H(E)|ƒ is starlike univalent on E}TR = {ƒ ∈ H(E)|ƒ is typically real on E}.The uniform norm on (— 1, 1) of a function ƒ ∈ H(E) is defined by


Sign in / Sign up

Export Citation Format

Share Document