IV.—On Least Squares and Linear Combination of Observations

1936 ◽  
Vol 55 ◽  
pp. 42-48 ◽  
Author(s):  
A. C. Aitken

In a series of papers W. F. Sheppard (1912, 1914) has considered the approximate representation of equidistant, equally weighted, and uncorrelated observations under the following assumptions:–(i) The data beingu1, u2, …, un, the representation is to be given by linear combinations(ii) The linear combinations are to be such as would reproduce any set of values that were already values of a polynomial of degree not higher than thekth.(iii) The sum of squared coefficientswhich measures the mean square error ofyi, is to be a minimum for each value ofi.

Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 605 ◽  
Author(s):  
Román Salmerón Gómez ◽  
Ainara Rodríguez Sánchez ◽  
Catalina García García ◽  
José García Pérez

The raise regression has been proposed as an alternative to ordinary least squares estimation when a model presents collinearity. In order to analyze whether the problem has been mitigated, it is necessary to develop measures to detect collinearity after the application of the raise regression. This paper extends the concept of the variance inflation factor to be applied in a raise regression. The relevance of this extension is that it can be applied to determine the raising factor which allows an optimal application of this technique. The mean square error is also calculated since the raise regression provides a biased estimator. The results are illustrated by two empirical examples where the application of the raise estimator is compared to the application of the ridge and Lasso estimators that are commonly applied to estimate models with multicollinearity as an alternative to ordinary least squares.


Author(s):  
W. H. J. Fuchs

1. A set of functions {øν (t)} (ν = 1, 2, …) is said to be closed L2 in (a, b), ifimplies f (t) = 0 p.p. in (a, b). It is well known that a set of functions is closed L2, if and only if every function of L2 (a, b) can be approximated in the mean square sense as closely as desired by finite linear combinations of the øν (t).


2019 ◽  
Vol 13 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Hossam Talaat Elshambaky

Abstract Least-squares collocation (LSC) is a crucial mathematical tool for solving many geodetic problems. It has the capability to adjust, filter, and predict unknown quantities that affect many geodetic applications. Hence, this study aims to enhance the predictability property of LSC through applying soft computing techniques in the stage of describing the covariance function. Soft computing techniques include the support vector machine (SVM), least-squares-support vector machine (LS-SVM), and artificial neural network (ANN). A real geodetic case study is used to predict a national geoid from the EGM2008 global geoid model in Egypt. A comparison study between parametric and soft computing techniques was performed to assess the LSC predictability accuracy. We found that the predictability accuracy increased when using soft computing techniques in the range of 10.2 %–27.7 % and 8.2 %–29.8 % based on the mean square error and the mean error terms, respectively, compared with the parametric models. The LS-SVM achieved the highest accuracy among the soft computing techniques. In addition, we found that the integration between the LS-SVM with LSC exhibits an accuracy of 20 % and 25 % higher than using LS-SVM independently as a predicting tool, based on the mean square error and mean error terms, respectively. Consequently, the LS-SVM integrated with LSC is recommended for enhanced predictability in geodetic applications.


1978 ◽  
Vol 48 ◽  
pp. 227-228
Author(s):  
Y. Requième

In spite of important delays in the initial planning, the full automation of the Bordeaux meridian circle is progressing well and will be ready for regular observations by the middle of the next year. It is expected that the mean square error for one observation will be about ±0.”10 in the two coordinates for declinations up to 87°.


2018 ◽  
Vol 934 (4) ◽  
pp. 59-62
Author(s):  
V.I. Salnikov

The question of calculating the limiting values of residuals in geodesic constructions is considered in the case when the limiting value for measurement errors is assumed equal to 3m, ie ∆рred = 3m, where m is the mean square error of the measurement. Larger errors are rejected. At present, the limiting value for the residual is calculated by the formula 3m√n, where n is the number of measurements. The article draws attention to two contradictions between theory and practice arising from the use of this formula. First, the formula is derived from the classical law of the normal Gaussian distribution, and it is applied to the truncated law of the normal distribution. And, secondly, as shown in [1], when ∆рred = 2m, the sums of errors naturally take the value equal to ?pred, after which the number of errors in the sum starts anew. This article establishes its validity for ∆рred = 3m. A table of comparative values of the tolerances valid and recommended for more stringent ones is given. The article gives a graph of applied and recommended tolerances for ∆рred = 3m.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1460
Author(s):  
Jinming Liu ◽  
Changhao Zeng ◽  
Na Wang ◽  
Jianfei Shi ◽  
Bo Zhang ◽  
...  

Biochemical methane potential (BMP) of anaerobic co-digestion (co-AD) feedstocks is an essential basis for optimizing ratios of materials. Given the time-consuming shortage of conventional BMP tests, a rapid estimated method was proposed for BMP of co-AD—with straw and feces as feedstocks—based on near infrared spectroscopy (NIRS) combined with chemometrics. Partial least squares with several variable selection algorithms were used for establishing calibration models. Variable selection methods were constructed by the genetic simulated annealing algorithm (GSA) combined with interval partial least squares (iPLS), synergy iPLS, backward iPLS, and competitive adaptive reweighted sampling (CARS), respectively. By comparing the modeling performances of characteristic wavelengths selected by different algorithms, it was found that the model constructed using 57 characteristic wavelengths selected by CARS-GSA had the best prediction accuracy. For the validation set, the determination coefficient, root mean square error and relative root mean square error of the CARS-GSA model were 0.984, 6.293 and 2.600, respectively. The result shows that the NIRS regression model—constructed with characteristic wavelengths, selected by CARS-GSA—can meet actual detection requirements. Based on a large number of samples collected, the method proposed in this study can realize the rapid and accurate determination of the BMP for co-AD raw materials in biogas engineering.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1631
Author(s):  
Bruno Guilherme Martini ◽  
Gilson Augusto Helfer ◽  
Jorge Luis Victória Barbosa ◽  
Regina Célia Espinosa Modolo ◽  
Marcio Rosa da Silva ◽  
...  

The application of ubiquitous computing has increased in recent years, especially due to the development of technologies such as mobile computing, more accurate sensors, and specific protocols for the Internet of Things (IoT). One of the trends in this area of research is the use of context awareness. In agriculture, the context involves the environment, for example, the conditions found inside a greenhouse. Recently, a series of studies have proposed the use of sensors to monitor production and/or the use of cameras to obtain information about cultivation, providing data, reminders, and alerts to farmers. This article proposes a computational model for indoor agriculture called IndoorPlant. The model uses the analysis of context histories to provide intelligent generic services, such as predicting productivity, indicating problems that cultivation may suffer, and giving suggestions for improvements in greenhouse parameters. IndoorPlant was tested in three scenarios of the daily life of farmers with hydroponic production data that were obtained during seven months of cultivation of radicchio, lettuce, and arugula. Finally, the article presents the results obtained through intelligent services that use context histories. The scenarios used services to recommend improvements in cultivation, profiles and, finally, prediction of the cultivation time of radicchio, lettuce, and arugula using the partial least squares (PLS) regression technique. The prediction results were relevant since the following values were obtained: 0.96 (R2, coefficient of determination), 1.06 (RMSEC, square root of the mean square error of calibration), and 1.94 (RMSECV, square root of the mean square error of cross validation) for radicchio; 0.95 (R2), 1.37 (RMSEC), and 3.31 (RMSECV) for lettuce; 0.93 (R2), 1.10 (RMSEC), and 1.89 (RMSECV) for arugula. Eight farmers with different functions on the farm filled out a survey based on the technology acceptance model (TAM). The results showed 92% acceptance regarding utility and 98% acceptance for ease of use.


Sign in / Sign up

Export Citation Format

Share Document