scholarly journals A Universal Property of the Takahashi Quasi-Dual

1972 ◽  
Vol 24 (3) ◽  
pp. 530-536 ◽  
Author(s):  
Detlev Poguntke

Topological group always means Hausdorff topological group, homomorphism (isomorphism) between topological groups always means continuous homomorphism (homeomorphic isomorphism). For a topological group G, the topological commutator subgroup (the closure of the algebraic commutator subgroup) is denoted by G’. For each locally compact group G, Takahashi has constructed a locally compact group GT (called the Takahashi quasi-dual) and a homomorphism G → GT such that GT is maximally almost periodic, and GT’ is compact. The category of all locally compact groups with these two properties is denoted by [TAK]. Takahashi's duality theorem states that G → GT is an isomorphism if G ∊ [TAK].

2019 ◽  
Vol 26 (1) ◽  
pp. 29-33
Author(s):  
Sanjib Basu ◽  
Krishnendu Dutta

Abstract We prove that, under certain restrictions, every locally compact group equipped with a nonzero, σ-finite, regular left Haar measure can be decomposed into two small sets, one of which is small in the sense of measure and the other is small in the sense of category, and all such decompositions originate from a generalised notion of a Lebesgue point. Incidentally, such class of topological groups for which this happens turns out to be metrisable. We also observe an interesting connection between Luzin sets in such spaces and decompositions of the above type.


1996 ◽  
Vol 48 (6) ◽  
pp. 1273-1285 ◽  
Author(s):  
Tianxuan Miao

AbstractLet G be a locally compact topological group. A number of characterizations are given of the class of compact groups in terms of the geometric properties such as Radon-Nikodym property, Dunford-Pettis property and Schur property of Ap(G), and the properties of the multiplication operator on PFp(G). We extend and improve several results of Lau and Ülger [17] to Ap(G) and Bp(G) for arbitrary p.


Author(s):  
M. FILALI

AbstractLetGbe a locally compact group and$\mathcal{U}G$be its largest semigroup compactification. Thensx≠xin$\mathcal{U}G$wheneversis an element inGother thane. This result was proved by Ellis in 1960 for the caseGdiscrete (and so$\mathcal{U}G$is the Stone–Čech compactification βGofG), and by Veech in 1977 for any locally compact group. We study this property in theWAP– compactification$\mathcal{W}G$ofG; and in$\mathcal{U}G$, we look at the situation whenxs≠x. The points are separated by some weakly almost periodic functions which we are able to construct on a class of locally compact groups, which includes the so-called E-groups introduced by C. Chou and which is much larger than the class of SIN groups. The other consequences deduced with these functions are: a generalization of some theorems on the regularity of$\mathcal{W}G$due to Ruppert and Bouziad, an analogue in$\mathcal{W}G$of the “local structure theorem” proved by J. Pym in$\mathcal{U}G$, and an improvement of some earlier results proved by the author and J. Baker on$\mathcal{W}G$.


1969 ◽  
Vol 21 ◽  
pp. 655-659 ◽  
Author(s):  
R. T. Ramsay

If G = (G, τ) is a topological group with topology τ, then there is a smallest topology τ* ⊇ τ such that G* = (G, τ*) is a topological group with equal left and right uniformities (1). Bagley and Wu introduced this topology in (1), and studied the relationship between Gand G*. In this paper we prove some additional results concerning G* and groups with equal uniformities in general. The structure of locally compact groups with equal uniformities has been studied extensively. If G is a locally compact connected group, then G has equal uniformities if and only if G ≅ V× K,where F is a vector group and Kis a compact group (5). More generally, every locally compact group with equal uniformities has an open normal subgroup of the form V× K(4).


1974 ◽  
Vol 17 (3) ◽  
pp. 274-284 ◽  
Author(s):  
C. H. Houghton

Freudenthal [5, 7] defined a compactification of a rim-compact space, that is, a space having a base of open sets with compact boundary. The additional points are called ends and Freudenthal showed that a connected locally compact non-compact group having a countable base has one or two ends. Later, Freudenthal [8], Zippin [16], and Iwasawa [11] showed that a connected locally compact group has two ends if and only if it is the direct product of a compact group and the reals.


1968 ◽  
Vol 9 (2) ◽  
pp. 87-91 ◽  
Author(s):  
J. W. Baker

Let H be a group of characters on an (algebraic) abelian group G. In a natural way, we may regard G as a group of characters on H. In this way, we obtain a duality between the two groups G and H. One may pose several problems about this duality. Firstly, one may ask whether there exists a group topology on G for which H is precisely the set of continuous characters. This question has been answered in the affirmative in [1]. We shall say that such a topology is compatible with the duality between G and H. Next, one may ask whether there exists a locally compact group topology on G which is compatible with a given duality and, if so, whether there is more than one such topology. It is this second question (previously considered by other authors, to whom we shall refer below) which we shall consider here.


2012 ◽  
Vol 88 (1) ◽  
pp. 113-122 ◽  
Author(s):  
I. AKBARBAGLU ◽  
S. MAGHSOUDI

AbstractLet $G$ be a locally compact group. In this paper, we show that if $G$ is a nondiscrete locally compact group, $p\in (0, 1)$ and $q\in (0, + \infty ] $, then $\{ (f, g)\in {L}^{p} (G)\times {L}^{q} (G): f\ast g\text{ is finite } \lambda \text{-a.e.} \} $ is a set of first category in ${L}^{p} (G)\times {L}^{q} (G)$. We also show that if $G$ is a nondiscrete locally compact group and $p, q, r\in [1, + \infty ] $ such that $1/ p+ 1/ q\gt 1+ 1/ r$, then $\{ (f, g)\in {L}^{p} (G)\times {L}^{q} (G): f\ast g\in {L}^{r} (G)\} $, is a set of first category in ${L}^{p} (G)\times {L}^{q} (G)$. Consequently, for $p, q\in [1+ \infty )$ and $r\in [1, + \infty ] $ with $1/ p+ 1/ q\gt 1+ 1/ r$, $G$ is discrete if and only if ${L}^{p} (G)\ast {L}^{q} (G)\subseteq {L}^{r} (G)$; this answers a question raised by Saeki [‘The ${L}^{p} $-conjecture and Young’s inequality’, Illinois J. Math. 34 (1990), 615–627].


1967 ◽  
Vol 7 (4) ◽  
pp. 433-454 ◽  
Author(s):  
Neil W. Rickert

In this paper a number of questions about locally compact groups are studied. The structure of finite dimensional connected locally compact groups is investigated, and a fairly simple representation of such groups is obtained. Using this it is proved that finite dimensional arcwise connected locally compact groups are Lie groups, and that in general arcwise connected locally compact groups are locally connected. Semi-simple locally compact groups are then investigated, and it is shown that under suitable restrictions these satisfy many of the properties of semi-simple Lie groups. For example, a factor group of a semi-simple locally compact group is semi-simple. A result of Zassenhaus, Auslander and Wang is reformulated, and in this new formulation it is shown to be true under more general conditions. This fact is used in the study of (C)-groups in the sense of K. Iwasawa.


2012 ◽  
Vol 110 (1) ◽  
pp. 99 ◽  
Author(s):  
Robert J. Archbold ◽  
Eberhard Kaniuth

If $G$ is an almost connected, nilpotent, locally compact group then the real rank of the $C^\ast$-algebra $C^\ast (G)$ is given by $\operatorname {RR} (C^\ast (G)) = \operatorname {rank} (G/[G,G]) = \operatorname {rank} (G_0/[G_0,G_0])$, where $G_0$ is the connected component of the identity element. In particular, for the continuous Heisenberg group $G_3$, $\operatorname {RR} C^\ast (G_3))=2$.


1971 ◽  
Vol 23 (3) ◽  
pp. 413-420 ◽  
Author(s):  
T. H. McH. Hanson

In [2] we find the definition of a locally compact group with zero as a locally compact Hausdorff topological semigroup, S, which contains a non-isolated point, 0, such that G = S – {0} is a group. Hofmann shows in [2] that 0 is indeed a zero for S, G is a locally compact topological group, and the unit, 1, of G is the unit of S. We are to study actions of S and G on spaces, and the reader is referred to [4] for the terminology of actions.If X is a space (all are assumed Hausdorff) and A ⊂ X, A* denotes the closure of A. If {xρ} is a net in X, we say limρxρ = ∞ in X if {xρ} has no subnet which converges in X.


Sign in / Sign up

Export Citation Format

Share Document