Maximal Quotient Rings and S-Rings

1972 ◽  
Vol 24 (5) ◽  
pp. 835-850 ◽  
Author(s):  
E. P. Armendariz ◽  
Gary R. McDonald

Throughout, we assume all rings are associative with identity and all modules are unitary. See [7] for undefined terms and [3] for all homological concepts.Let R be a ring, E(R) the injective envelope of RR, and H =HomR(E(R),E(R)). Then we obtain a bimodule RE(R)H. Let Q = HomH(E(R), E(R)). Q is called the maximal left quotient ring of R. Q has the property that if p, q ∈ Q, p ≠ 0, then there exists r ∈ R such that rp ≠ 0, rq ∈ R, i.e., Q is a ring of left quotients of R.A left ideal I of R is dense if for every x,y ∈ R,x ≠ 0, there exists r ∈ R such that rx ≠ 0, ry ∈ I. An alternate description of Q is Q = {x ∈ E(RR) : (R : x) is a dense left ideal of R{, where (R : x) = {r ∈ R : rx ∈ R}.The left singular ideal of R is Zl(R) = {r ∈ R : lR(r) is an essential left ideal of R}, where lR(r) = {x ∈ R : xr = 0}. If Zl(R) = (0), then Q is a left self-injective von Neumann regular ring [7, § 4.5]. Most of the previous work on maximal left quotient rings has been done in this case.

2000 ◽  
Vol 31 (2) ◽  
pp. 137-144
Author(s):  
Ryuki Matsuda

Let $S$ be a subsemigroup which contains 0 of a torsion-free abelian (additive) group. Then $S$ is called a grading monoid (or a $g$-monoid). The group $ \{s-s'|s,s'\in S\}$ is called the quotient group of $S$, and is denored by $q(S)$. Let $R$ be a commutative ring. The total quotient ring of $R$ is denoted by $q(R)$. Throught the paper, we assume that a $g$-monoid properly contains $ \{0\}$. A commutative ring is called a ring, and a non-zero-divisor of a ring is called a regular element of the ring. We consider integral elements over the semigroup ring $ R[X;S]$ of $S$ over $R$. Let $S$ be a $g$-monoid with quotient group $G$. If $ n\alpha\in S$ for an element $ \alpha$ of $G$ and a natural number $n$ implies $ \alpha\in S$, then $S$ is called an integrally closed semigroup. We know the following fact: ${\bf Theorem~1}$ ([G2, Corollary 12.11]). Let $D$ be an integral domain and $S$ a $g$-monoid. Then $D[X;S]$ is integrally closed if and only if $D$ is an integrally closed domain and $S$ is an integrally closed semigroup. Let $R$ be a ring. In this paper, we show that conditions for $R[X;S]$ to be integrally closed reduce to conditions for the polynomial ring of an indeterminate over a reduced total quotient ring to be integrally closed (Theorem 15). Clearly the quotient field of an integral domain is a von Neumann regular ring. Assume that $q(R)$ is a von Neumann regular ring. We show that $R[X;S]$ is integrally closed if and only if $R$ is integrally closed and $S$ is integrally closed (Theorem 20). Let $G$ be a $g$-monoid which is a group. If $R$ is a subring of the ring $T$ which is integrally closed in $T$, we show that $R[X;G]$ is integrally closed in $T[X;S]$ (Theorem 13). Finally, let $S$ be sub-$g$-monoid of a totally ordered abelian group. Let $R$ be a subring of the ring $T$ which is integrally closed in $T$. If $g$ and $h$ are elements of $T[X;S]$ with $h$ monic and $gh\in R[X;S]$, we show that $g\in R[X;S]$ (Theorem 24).


2011 ◽  
Vol 10 (06) ◽  
pp. 1351-1362 ◽  
Author(s):  
DAVID E. DOBBS ◽  
JAY SHAPIRO

Let R ⊆ T be a (unital) extension of (commutative) rings, such that the total quotient ring of R is a von Neumann regular ring and T is torsion-free as an R-module. Let T ⊆ B be a ring extension such that B is a reduced ring that is torsion-free as a T-module. Let R* (respectively, A) be the integral closure of R in T (respectively, in B). Then (R*, T) is a normal pair (i.e. S is integrally closed in T for each ring S such that R* ⊆ S ⊆ T) if and only if (A, AT) is a normal pair. This generalizes results of Prüfer and Heinzer on Prüfer domains to normal pairs of complemented rings.


2007 ◽  
Vol 06 (05) ◽  
pp. 779-787 ◽  
Author(s):  
SONIA L'INNOCENTE ◽  
MIKE PREST

Let M be a Verma module over the Lie algebra, sl 2(k), of trace zero 2 × 2 matrices over the algebraically closed field k. We show that the ring, RM, of definable scalars of M is a von Neumann regular ring and that the canonical map from U( sl 2(k)) to RM is an epimorphism of rings. We also describe the Ziegler closure of M. The proofs make use of ideas from the model theory of modules.


Author(s):  
Zoran Petrovic ◽  
Maja Roslavcev

Let R be a commutative von Neumann regular ring. We show that every finitely generated ideal I in the ring of polynomials R[X] has a strong Gr?bner basis. We prove this result using only the defining property of a von Neumann regular ring.


2011 ◽  
Vol 21 (05) ◽  
pp. 745-762 ◽  
Author(s):  
TAI KEUN KWAK ◽  
YANG LEE

Antoine studied conditions which are connected to the question of Amitsur of whether or not a polynomial ring over a nil ring is nil, observing the structure of nilpotent elements in Armendariz rings and introducing the notion of nil-Armendariz rings. The class of nil-Armendariz rings contains Armendariz rings and NI rings. We continue the study of nil-Armendariz rings, concentrating on the structure of rings over which coefficients of nilpotent polynomials are nilpotent. In the procedure we introduce the notion of CN-rings that is a generalization of nil-Armendariz rings. We first construct a CN-ring but not nil-Armendariz. This may be a base on which Antoine's theory can be applied and elaborated. We investigate basic ring theoretic properties of CN-rings, and observe various kinds of CN-rings including ordinary ring extensions. It is shown that a ring R is CN if and only if R is nil-Armendariz if and only if R is Armendariz if and only if R is reduced when R is a von Neumann regular ring.


1972 ◽  
Vol 15 (2) ◽  
pp. 301-303 ◽  
Author(s):  
F. R. McMorris

It is a well known result (see [4, p. 108]) that if R is a ring and Q(R) its maximal right quotient ring, then Q(R) is (von Neumann) regular if and only if every large right ideal of R is dense. This condition is equivalent to saying that the singular ideal of R is zero. In this note we show that the condition loses its magic in the theory of semigroups.


1985 ◽  
Vol 37 (6) ◽  
pp. 1134-1148
Author(s):  
David Handelman

In this paper, we are primarily concerned with the behaviour of the centre with respect to the completion process for von Neumann regular rings at the pseudo-metric topology induced by a pseudo-rank function.Let R be a (von Neumann) regular ring, and N a pseudo-rank function (all terms left undefined here may be found in [6]). Then N induces a pseudo-metric topology on R, and the completion of R at this pseudo-metric, , is a right and left self-injective regular ring. Let Z( ) denote the centre of whatever ring is in the brackets. We are interested in the map .If R is simple, Z(R) is a field, so is discrete in the topology; yet Goodearl has constructed an example with Z(R) = R and Z(R) = C [5, 2.10]. There is thus no hope of a general density result.


1974 ◽  
Vol 17 (2) ◽  
pp. 283-284 ◽  
Author(s):  
Kwangil Koh

Recently, in the Research Problems of Canadian Mathematical Bulletin, Vol. 14, No. 4, 1971, there appeared a problem which asks “Is a prime Von Neumann regular ring pimitive?” While we are not able to settle this question one way or the other, we prove that in a Von Neumann regular ring, there is a maximal annihilator right ideal if and only if there is a minimal right ideal.


1979 ◽  
Vol 44 (1) ◽  
pp. 77-88 ◽  
Author(s):  
Steven Garavaglia

This paper is mainly concerned with describing complete theories of modules by decomposing them (up to elementary equivalence) into direct products of simpler modules. In §1, I give a decomposition theorem which works for arbitrary direct product theories T. Given such a T, I define T-indecomposable structures and show that every model of T is elementarily equivalent to a direct product of T-indecomposable models of T. In §2, I show that if R is a commutative ring then every R-module is elementarily equivalent to ΠMM where M ranges over the maximal ideals of R and M is the localization of at M. This is applied to prove that if R is a commutative von Neumann regular ring and TR is the theory of R-modules then the TR-indecomposables are precisely the cyclic modules of the form R/M where M is a maximal ideal. In §3, I use the decomposition established in §2 to characterize the ω1-categorical and ω-stable modules over a countable commutative von Neumann regular ring and the superstable modules over a commutative von Neumann regular ring of arbitrary cardinality. In the process, I also prove several general characterizations of ω-stable and superstable modules; e.g., if R is any countable ring, then an R-moduIe is ω-stable if and only if every R-module elementarily equivalent to it is equationally compact.


Sign in / Sign up

Export Citation Format

Share Document