Integral Limit Laws for Additive Functions

1973 ◽  
Vol 25 (1) ◽  
pp. 194-203
Author(s):  
J. Galambos

In the present paper a general form of integral limit laws for additive functions is obtained. Our limit law contains Kubilius’ results [5] on his class H. In the proof we make use of characteristic functions (Fourier transforms), which reduces our problem to finding asymptotic formulas for sums of multiplicative functions. This requires an extension of previous results in order to enable us to take into consideration the parameter of the characteristic function in question. We call this extension a parametric mean value theorem for multiplicative functions and its proof is analytic on the line of [4].

1954 ◽  
Vol 6 ◽  
pp. 186-189 ◽  
Author(s):  
Eugene Lukacs ◽  
Otto Szász

In an earlier paper (1), published in this journal, a necessary condition was given which the reciprocal of a polynomial without multiple roots must satisfy in order to be a characteristic function. This condition is, however, valid for a wider class of functions since it can be shown (2, theorem 2 and corollary to theorem 3) that it holds for all analytic characteristic functions. The proof given in (1) is elementary and has some methodological interest since it avoids the use of theorems on singularities of Laplace transforms. Moreover the method used in (1) yields some additional necessary conditions which were not given in (1) and which do not seem to follow easily from the properties of analytic characteristic functions.


2016 ◽  
Vol 161 (1) ◽  
pp. 87-101 ◽  
Author(s):  
NIKOS FRANTZIKINAKIS ◽  
BERNARD HOST

AbstractA celebrated result of Halász describes the asymptotic behavior of the arithmetic mean of an arbitrary multiplicative function with values on the unit disc. We extend this result to multilinear averages of multiplicative functions providing similar asymptotics, thus verifying a two dimensional variant of a conjecture of Elliott. As a consequence, we get several convergence results for such multilinear expressions, one of which generalises a well known convergence result of Wirsing. The key ingredients are a recent structural result for multiplicative functions with values on the unit disc proved by the authors and the mean value theorem of Halász.


1951 ◽  
Vol 3 ◽  
pp. 140-144 ◽  
Author(s):  
Eugene Lukacs ◽  
Otto Szasz

Fourier transforms of distribution functions are frequently studied in the theory of probability. In this connection they are called characteristic functions of probability distributions. It is often of interest to decide whether a given function φ(t) can be the characteristic function of a probability distribution, that is, whether it admits the representation


1981 ◽  
Vol 22 (1) ◽  
pp. 19-29 ◽  
Author(s):  
N. J. Kalton

Let X be an F-space (complete metric linear space) and suppose g:[0, 1] → X is a continuous map. Suppose that g has zero derivative on [0, 1], i.e.for 0≤t≤1 (we take the left and right derivatives at the end points). Then, if X is locally convex or even if it merely possesses a separating family of continuous linear functionals, we can conclude that g is constant by using the Mean Value Theorem. If however X* = {0} then it may happen that g is not constant; for example, let X = Lp(0, 1) (0≤p≤1) and g(t) = l[0,t] (0≤t≤1) (the characteristic function of [0, t]). This example is due to Rolewicz [6], [7; p. 116].


1980 ◽  
Vol 172 (3) ◽  
pp. 255-271 ◽  
Author(s):  
Karl-Heinz Indlekofer

Author(s):  
A. M. Macbeath ◽  
C. A. Rogers

The Minkowski–Hlawka theorem† asserts that, if S is any n-dimensional star body, with the origin o as centre, and with volume less than 2ζ(n), then there is a lattice of determinant 1 which has no point other than o in S. One of the methods used to prove this theorem splits up into three stages, (a) A function ρ(x) is considered, and it is shown that some suitably defined mean value of the sumtaken over a suitable set of lattices Λ of determinant 1, is equal, or approximately equal, to the integralover the whole space. (b) By taking ρ(x) to be equal, or approximately equal, towhere σ(x) is the characteristic function of S, and μ(r) is the Möbius function, it is shown that a corresponding mean value of the sumwhere Λ* is the set of primitive points of the lattice Λ, is equal, or approximately equal, to


Sign in / Sign up

Export Citation Format

Share Document