Curvature Bounds for the Spectrum of Closed Einstein Spaces

1978 ◽  
Vol 30 (5) ◽  
pp. 1087-1091 ◽  
Author(s):  
Udo Simon

The following is our main result.(A) THEOREM. Let (M, g) be a closed connected Einstein space, n = dim M ≧ 2 (with constant scalar curvature R). Let K0 be the lower bound of the sectional curvature. Then either (M, g) is isometrically diffeomorphic to a sphere and the first nonzero eigenvalue ƛ1of the Laplacian fulfils




2019 ◽  
Vol 16 (08) ◽  
pp. 1950124 ◽  
Author(s):  
Uday Chand De ◽  
Sameh Shenawy

Recently, it is proven that generalized Robertson–Walker space-times in all orthogonal subspaces of Gray’s decomposition except one (unrestricted) are perfect fluid space-times. GRW space-times in the unrestricted subspace are identified by having constant scalar curvature. Generalized quasi-Einstein GRW space-times have a constant scalar curvature. It is shown that generalized quasi-Einstein GRW space-times reduce to Einstein space-times or perfect fluid space-times.



2002 ◽  
Vol 132 (5) ◽  
pp. 1163-1183 ◽  
Author(s):  
Qing-Ming Cheng

In this paper, we study n-dimensional complete submanifolds with constant scalar curvature in the Euclidean space En+p and n-dimensional compact submanifolds with constant scalar curvature in the unit sphere Sn+p(1). We prove that the totally umbilical sphere Sn(r), totally geodesic Euclidean space En and generalized cylinder Sn−1(c) × E1 are the only n-dimensional (n > 2) complete submanifolds Mn with constant scalar curvature n(n − 1)r in the Euclidean space En+p, which satisfy the following condition: where S denotes the squared norm of the second fundamental form of Mn. For compact submanifolds with constant scalar curvature in the unit sphere Sn+p(1), we also obtain a corresponding result (see theorem 1.3).



2002 ◽  
Vol 132 (5) ◽  
pp. 1163-1183 ◽  
Author(s):  
Qing-Ming Cheng

In this paper, we study n-dimensional complete submanifolds with constant scalar curvature in the Euclidean space En+p and n-dimensional compact submanifolds with constant scalar curvature in the unit sphere Sn+p(1). We prove that the totally umbilical sphere Sn(r), totally geodesic Euclidean space En and generalized cylinder Sn−1(c) × E1 are the only n-dimensional (n > 2) complete submanifolds Mn with constant scalar curvature n(n − 1)r in the Euclidean space En+p, which satisfy the following condition: where S denotes the squared norm of the second fundamental form of Mn. For compact submanifolds with constant scalar curvature in the unit sphere Sn+p(1), we also obtain a corresponding result (see theorem 1.3).



2020 ◽  
Vol 53 (2) ◽  
pp. 212-217 ◽  
Author(s):  
V. A. Kiosak ◽  
G. V. Kovalova

In this paper we study a special type of pseudo-Riemannian spaces - quasi-Einstein spaces of constant scalar curvature. These spaces are generalizations of known Einstein spaces. We obtained a linear form of the basic equations of the theory of geodetic mappings for these spaces. The studies are conducted locally in tensor form, without restrictions on the sign and signature of the metric tensor.



2020 ◽  
Author(s):  
V. Kiosak ◽  
A. Savchenko ◽  
A. Kamienieva


2009 ◽  
Vol 06 (04) ◽  
pp. 619-624 ◽  
Author(s):  
HAMID REZA SALIMI MOGHADDAM

In this paper we study sectional curvature of invariant hyper-Hermitian metrics on simply connected 4-dimensional real Lie groups admitting invariant hypercomplex structure. We give the Levi–Civita connections and explicit formulas for computing sectional curvatures of these metrics and show that all these spaces have constant scalar curvature. We also show that they are flat or they have only non-negative or non-positive sectional curvature.



2019 ◽  
Vol 16 (03) ◽  
pp. 1950039 ◽  
Author(s):  
V. Venkatesha ◽  
Devaraja Mallesha Naik

If [Formula: see text] is a 3-dimensional contact metric manifold such that [Formula: see text] which admits a Yamabe soliton [Formula: see text] with the flow vector field [Formula: see text] pointwise collinear with the Reeb vector field [Formula: see text], then we show that the scalar curvature is constant and the manifold is Sasakian. Moreover, we prove that if [Formula: see text] is endowed with a Yamabe soliton [Formula: see text], then either [Formula: see text] is flat or it has constant scalar curvature and the flow vector field [Formula: see text] is Killing. Furthermore, we show that if [Formula: see text] is non-flat, then either [Formula: see text] is a Sasakian manifold of constant curvature [Formula: see text] or [Formula: see text] is an infinitesimal automorphism of the contact metric structure on [Formula: see text].



Author(s):  
Thomas Hasanis

AbstractWe consider the extent of certain complete hypersurfaces of Euclidean space. We prove that every complete hypersurface in En+1 with sectional curvature bounded below and non-positive scalar curvature has at least (n − 1) unbounded coordinate functions.



Sign in / Sign up

Export Citation Format

Share Document