Gyclotomic Division Algebras

1981 ◽  
Vol 33 (5) ◽  
pp. 1074-1084 ◽  
Author(s):  
R. A. Mollin

Let K be a field of characteristic zero. The Schur subgroup S(K) of Brauer group B(K) consists of those equivalence classes [A] which contain an algebra which is isomorphic to a simple summand of the group algebra KG for some finite group G. It is well known that the classes in S(K) are represented by cyclotomic algebras, (see [16]). However it is not necessarily the case that the division algebra representatives of these classes are themselves cyclotomic. The main result of this paper is to provide necessary and sufficient conditions for the latter to occur when K is any algebraic number field.Next we provide necessary and sufficient conditions for the Schur group of a local field to be induced from the Schur group of an arbitrary subfield. We obtain a corollary from this result which links it to the main result. Finally we link the concept of the stufe of a number field to the existence of certain quaternion division algebras in S(K).

1982 ◽  
Vol 25 (2) ◽  
pp. 222-229 ◽  
Author(s):  
R. A. Mollin

AbstractLet D be a division algebra whose class [D] is in B(K), the Brauer group of an algebraic number field K. If [D⊗KL] is the trivial class in B(L), then we say that L is a splitting field for D or L splits D. The splitting fields in D of smallest dimension are the maximal subfields of D. Although there are infinitely many maximal subfields of D which are cyclic extensions of K; from the perspective of the Schur Subgroup S(K) of B(K) the natural splitting fields are the cyclotomic ones. In (Cyclotomic Splitting Fields, Proc. Amer. Math. Soc. 25 (1970), 630-633) there are errors which have led to the main result of this paper, namely to provide necessary and sufficient conditions for (D) in S(K) to have a maximal subfield which is a cyclic cyclotomic extension of K, a finite abelian extension of Q. A similar result is provided for quaternion division algebras in B(K).


2017 ◽  
Vol 13 (10) ◽  
pp. 2505-2514 ◽  
Author(s):  
Anuj Jakhar ◽  
Sudesh K. Khanduja ◽  
Neeraj Sangwan

Let [Formula: see text] denote the ring of algebraic integers of an algebraic number field [Formula: see text], where [Formula: see text] is a root of an irreducible trinomial [Formula: see text] belonging to [Formula: see text]. In this paper, we give necessary and sufficient conditions involving only [Formula: see text] for a given prime [Formula: see text] to divide the index of the subgroup [Formula: see text] in [Formula: see text]. In particular, we deduce necessary and sufficient conditions for [Formula: see text] to be equal to [Formula: see text].


2019 ◽  
Vol 15 (02) ◽  
pp. 353-360
Author(s):  
Sudesh K. Khanduja

For an algebraic number field [Formula: see text], let [Formula: see text] denote the discriminant of an algebraic number field [Formula: see text]. It is well known that if [Formula: see text] are algebraic number fields with coprime discriminants, then [Formula: see text] are linearly disjoint over the field [Formula: see text] of rational numbers and [Formula: see text], [Formula: see text] being the degree of [Formula: see text] over [Formula: see text]. In this paper, we prove that the converse of this result holds in relative extensions of algebraic number fields. We also give some more necessary and sufficient conditions for the analogue of the above equality to hold for algebraic number fields [Formula: see text] linearly disjoint over [Formula: see text].


2016 ◽  
Vol 15 (03) ◽  
pp. 1650049 ◽  
Author(s):  
Piyush Shroff ◽  
Sarah Witherspoon

We examine PBW deformations of finite group extensions of quantum symmetric algebras, in particular the quantum Drinfeld orbifold algebras defined by the first author. We give a homological interpretation, in terms of Gerstenhaber brackets, of the necessary and sufficient conditions on parameter functions to define a quantum Drinfeld orbifold algebra, thus clarifying the conditions. In case the acting group is trivial, we determine conditions under which such a PBW deformation is a generalized enveloping algebra of a color Lie algebra; our PBW deformations include these algebras as a special case.


1979 ◽  
Vol 28 (3) ◽  
pp. 335-345 ◽  
Author(s):  
Nicholas S. Ford

AbstractLet R be a commutative ring with identity, and let A be a finitely generated R-algebra with Jacobson radical N and center C. An R-inertial subalgebra of A is a R-separable subalgebra B with the property that B+N=A. Suppose A is separable over C and possesses a finite group G of R-automorphisms whose restriction to C is faithful with fixed ring R. If R is an inertial subalgebra of C, necessary and sufficient conditions for the existence of an R-inertial subalgebra of A are found when the order of G is a unit in R. Under these conditions, an R-inertial subalgebra B of A is characterized as being the fixed subring of a group of R-automorphisms of A. Moreover, A ⋍ B ⊗R C. Analogous results are obtained when C has an R-inertial subalgebra S ⊃ R.


1997 ◽  
Vol 40 (4) ◽  
pp. 402-415
Author(s):  
Jenna P. Carpenter

AbstractThis paper studies how the local root numbers and the Weil additive characters of the Witt ring of a number field behave under reciprocity equivalence. Given a reciprocity equivalence between two fields, at each place we define a local square class which vanishes if and only if the local root numbers are preserved. Thus this local square class serves as a local obstruction to the preservation of local root numbers. We establish a set of necessary and sufficient conditions for a selection of local square classes (one at each place) to represent a global square class. Then, given a reciprocity equivalence that has a finite wild set, we use these conditions to show that the local square classes combine to give a global square class which serves as a global obstruction to the preservation of all root numbers. Lastly, we use these results to study the behavior of Weil characters under reciprocity equivalence.


2010 ◽  
Vol 09 (02) ◽  
pp. 305-314 ◽  
Author(s):  
HARISH CHANDRA ◽  
MEENA SAHAI

Let K be a field of characteristic p ≠ 2,3 and let G be a finite group. Necessary and sufficient conditions for δ3(U(KG)) = 1, where U(KG) is the unit group of the group algebra KG, are obtained.


1970 ◽  
Vol 22 (1) ◽  
pp. 41-46 ◽  
Author(s):  
James C. Beidleman

1. The Frattini and Fitting subgroups of a finite group G have been useful subgroups in establishing necessary and sufficient conditions for G to be solvable. In [1, pp. 657-658, Theorem 1], Baer used these subgroups to establish several very interesting equivalent conditions for G to be solvable. One of Baer's conditions is that ϕ(S), the Frattini subgroup of S, is a proper subgroup of F(S), the Fitting subgroup of S, for each subgroup S ≠ 1 of G. Using the Fitting subgroup and generalized Frattini subgroups of certain subgroups of G we provide certain equivalent conditions for G to be a solvable group. One such condition is that F(S) is not a generalized Frattini subgroup of S for each subgroup S ≠ 1 of G. Our results are given in Theorem 1.


1962 ◽  
Vol 5 (3) ◽  
pp. 103-108 ◽  
Author(s):  
D. A. R. Wallace

It is well known that when the characteristic p(≠ 0) of a field divides the order of a finite group, the group algebra possesses a non-trivial radical and that, if p does not divide the order of the group, the group algebra is semi-simple. A group algebra has a centre, a basis for which consists of the class-sums. The radical may be contained in this centre; we obtain necessary and sufficient conditions for this to happen.


1993 ◽  
Vol 113 (3) ◽  
pp. 449-460 ◽  
Author(s):  
Sir Peter Swinnerton-Dyer

1. Let V be a non-singular rational surface defined over an algebraic number field k. There is a standard conjecture that the only obstructions to the Hasse principle and to weak approximation on V are the Brauer–Manin obstructions. A prerequisite for calculating these is a knowledge of the Brauer group of V; indeed there is one such obstruction, which may however be trivial, corresponding to each element of Br V/Br k. Because k is an algebraic number field, the natural injectionis an isomorphism; so the first step in calculating the Brauer–Manin obstruction is to calculate the finite group H1 (k), Pic .


Sign in / Sign up

Export Citation Format

Share Document