scholarly journals The Brauer group of cubic surfaces

1993 ◽  
Vol 113 (3) ◽  
pp. 449-460 ◽  
Author(s):  
Sir Peter Swinnerton-Dyer

1. Let V be a non-singular rational surface defined over an algebraic number field k. There is a standard conjecture that the only obstructions to the Hasse principle and to weak approximation on V are the Brauer–Manin obstructions. A prerequisite for calculating these is a knowledge of the Brauer group of V; indeed there is one such obstruction, which may however be trivial, corresponding to each element of Br V/Br k. Because k is an algebraic number field, the natural injectionis an isomorphism; so the first step in calculating the Brauer–Manin obstruction is to calculate the finite group H1 (k), Pic .

1965 ◽  
Vol 17 ◽  
pp. 933-945
Author(s):  
Leon Bernstein

In the first part of this paper I shall demonstrate that one irrational root of the algebraic equationcreates an algebraic number field, out of which n — 1 irrationals can be chosen so that they yield a periodic Jacobi-Perron algorithm. The coefficients in (1) are subject to certain restrictions which will be elaborated below.


1986 ◽  
Vol 100 (2) ◽  
pp. 237-248 ◽  
Author(s):  
J.-H. Evertse ◽  
J. H. Silverman

Let K be an algebraic number field and f(X) ∈ K[X]. The Diophantine problem of describing the solutions to equations of the formhas attracted considerable interest over the past 60 years. Siegel [12], [13] was the first to show that under suitable non-degeneracy conditions, the equation (+) has only finitely many integral solutions in K. LeVeque[7] proved the following, more explicit, result. Letwhere a ∈ K* and αl,…,αk are distinct and algebraic over K. Then (+) has only finitely many integral solutions unless (nl,…,nk) is a permutation of one of the n-tuples


Author(s):  
Fritz J. Grunewald ◽  
Daniel Segal

In answer to a question posed by J. L Britton in (2), we sketch in this note an effective procedure to decide whether an arbitrary quadratic equationwith rational coefficients, has a solution in integers. A similar procedure will in fact decide whether such an equation over a (suitably specified) algebraic number field k has a solution in any (suitably specified) order in k; but we shall not burden the exposition by giving chapter and verse for this claim.


Author(s):  
A. Baker

It is generally conjectured that if α1, α2 …, αk are algebraic numbers for which no equation of the formis satisfied with rational ri not all zero, and if K > 1 + l/k, then there are only finitely many sets of integers p1, p2, …, pkq, q > 0, such thatThis result would be best possible, for it is well known that (1) has infinitely many solutions when K = 1 + 1/k. † If α1, α2, …, αk are elements of an algebraic number field of degree k + 1 the result can be deduced easily (see Perron (11)). The famous theorem of Roth (13) asserts the truth of the conjecture in the case k = 1 and this implies that for any positive integer k, (1) certainly has only finitely many solutions if K > 2. Nothing further in this direction however has hitherto been proved.‡


1971 ◽  
Vol 44 ◽  
pp. 57-59 ◽  
Author(s):  
Yukio Tsushima

Let G be a finite group and let p be a fixed prime number. If D is any p-subgroup of G, then the problem whether there exists a p-block with D as its defect group is reduced to whether NG(D)/D possesses a p-block of defect 0. Some necessary or sufficient conditions for a finite group to possess a p-block of defect 0 have been known (Brauer-Fowler [1], Green [3], Ito [4] [5]). In this paper we shall show that the existences of such blocks depend on the multiplicative structures of the p-elements of G. Namely, let p be a prime divisor of p in an algebraic number field which is a splitting one for G, o the ring of p-integers and k = o/p, the residue class field.


1985 ◽  
Vol 37 (4) ◽  
pp. 644-663
Author(s):  
Claude Levesque

For Kn = Q(ω) a real algebraic number field of degree n over Q such thatwith D ∊ N, d ∊ Z, d|D2, and D2 + 4d > 0, we proved in [5] (by using the approach of Halter-Koch and Stender [6]) that ifwiththenis an independent system of units of Kn.


1981 ◽  
Vol 33 (5) ◽  
pp. 1074-1084 ◽  
Author(s):  
R. A. Mollin

Let K be a field of characteristic zero. The Schur subgroup S(K) of Brauer group B(K) consists of those equivalence classes [A] which contain an algebra which is isomorphic to a simple summand of the group algebra KG for some finite group G. It is well known that the classes in S(K) are represented by cyclotomic algebras, (see [16]). However it is not necessarily the case that the division algebra representatives of these classes are themselves cyclotomic. The main result of this paper is to provide necessary and sufficient conditions for the latter to occur when K is any algebraic number field.Next we provide necessary and sufficient conditions for the Schur group of a local field to be induced from the Schur group of an arbitrary subfield. We obtain a corollary from this result which links it to the main result. Finally we link the concept of the stufe of a number field to the existence of certain quaternion division algebras in S(K).


1963 ◽  
Vol 3 (4) ◽  
pp. 408-434 ◽  
Author(s):  
K. Mahler

In his Topics in Number Theory, vol. 2, chapter 2 (Reading, Mass., 1956) W. J. LeVeque proved an important generalisation of Roth's theorem (K. F. Roth, Mathematika 2,1955, 1—20).Let ξ be a fixed algebraic number, σ a positive constant, and K an algebraic number field of degree n. For κ∈K denote by κ(1), …, κ(n) the conjugates of κ relative to K, by h(κ) the smallest positive integer such that the polynomial has rational integral coefficients, and by q(κ) the quantity


1976 ◽  
Vol 15 (1) ◽  
pp. 33-57 ◽  
Author(s):  
A.J. van der Poorten ◽  
J.H. Loxton

For certain number theoretical applications, it is useful to actually compute the effectively computable constant which appears in Baker's inequality for linear forms in logarithms. In this note, we carry out such a detailed computation, obtaining bounds which are the best known and, in some respects, the best possible. We show inter alia that if the algebraic numbers α1, …, αn all lie in an algebraic number field of degree D and satisfy a certain independence condition, then for some n0(D) which is explicitly computed, the inequalities (in the standard notation)have no solution in rational integers b1, …, bn (bn ≠ 0) of absolute value at most B, whenever n ≥ n0(D). The very favourable dependence on n is particularly useful.


1966 ◽  
Vol 6 (4) ◽  
pp. 399-401
Author(s):  
Indar S. Luthar

In a recent paper, Maher [2] proved that for any algebraic number field K of degree n and discriminant d there exists a constant C depending only on n and d such that for any ceiling λP of K there exists a basis α1 …, αn of the corresponding ideal αλ such that .


Sign in / Sign up

Export Citation Format

Share Document