Amenability and Translation Experiments

1983 ◽  
Vol 35 (1) ◽  
pp. 49-58 ◽  
Author(s):  
Alan L. T. Paterson

In [11] it is shown that the deficiency of a translation experiment with respect to another on a σ-finite, amenable, locally compact group can be calculated in terms of probability measures on the group. This interesting result, brought to the writer's notice by [1], does not seem to be as wellknown in the theory of amenable groups as it should be. The present note presents a simple proof of the result, removing the σ-finiteness condition and repairing a gap in Torgersen's argument. The main novelty is the use of Wendel's multiplier theorem to replace Torgersen's approach which is based on disintegration of a bounded linear operator from L1(G) into C(G)* for G σ-finite (cf. [5], VI.8.6). The writer claims no particular competence in mathematical statistics, but hopes that the discussion of the above result from the “harmonic analysis” perspective may prove illuminating.We then investigate a similar issue for discrete semigroups. A set of transition operators, which reduce to multipliers in the group case, is introduced, and a semigroup version of Torgersen's theorem is established.

2005 ◽  
Vol 15 (05n06) ◽  
pp. 1261-1272 ◽  
Author(s):  
WOLFGANG WOESS

Let L≀X be a lamplighter graph, i.e., the graph-analogue of a wreath product of groups, and let P be the transition operator (matrix) of a random walk on that structure. We explain how methods developed by Saloff-Coste and the author can be applied for determining the ℓp-norms and spectral radii of P, if one has an amenable (not necessarily discrete or unimodular) locally compact group of isometries that acts transitively on L. This applies, in particular, to wreath products K≀G of finitely-generated groups, where K is amenable. As a special case, this comprises a result of Żuk regarding the ℓ2-spectral radius of symmetric random walks on such groups.


1969 ◽  
Vol 21 ◽  
pp. 592-594 ◽  
Author(s):  
A. F. Ruston

1. In a recent paper (1) on meromorphic operators, Caradus introduced the class of bounded linear operators on a complex Banach space X. A bounded linear operator T is put in the class if and only if its spectrum consists of a finite number of poles of the resolvent of T. Equivalently, T is in if and only if it has a rational resolvent (8, p. 314).Some ten years ago (in May, 1957), I discovered a property of the class g which may be of interest in connection with Caradus' work, and is the subject of the present note.2. THEOREM. Let X be a complex Banach space. If T belongs to the class, and the linear operator S commutes with every bounded linear operator which commutes with T, then there is a polynomial p such that S = p(T).


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Aftab Khan ◽  
Gul Rahmat ◽  
Akbar Zada

We prove that a discrete semigroup𝕋={T(n):n∈ℤ+}of bounded linear operators acting on a complex Banach spaceXis uniformly exponentially stable if and only if, for eachx∈AP0(ℤ+,X), the sequencen↦∑k=0n‍T(n-k)x(k):ℤ+→Xbelongs toAP0(ℤ+,X). Similar results for periodic discrete evolution families are also stated.


1973 ◽  
Vol 16 (3) ◽  
pp. 286-289 ◽  
Author(s):  
Anthony F. Ruston

It is known (see, for instance, [1] p. 64, [6] p. 264) that, if A and B are bounded linear operators on a Banach space into itself (or, more generally, if A is a bounded linear operator on into a Banach space and B is a bounded linear operator on into), then AB and BA have the same spectrum except (possibly) for zero. In the present note, it is shown that AB is asymptotically quasi-compact if and only if BA is asymptotically quasi-compact, and that then any Fredholm determinant for AB is a Fredholm determinant for BA and vice versa.


Author(s):  
Theo Bühler ◽  
Vadim Kaimanovich

The original definition of amenability given by von Neumann in the highly non-constructive terms of means was later recast by Day using approximately invariant probability measures. Moreover, as it was conjectured by Furstenberg and proved by Kaimanovich–Vershik and Rosenblatt, the amenability of a locally compact group is actually equivalent to the existence of a single probability measure on the group with the property that the sequence of its convolution powers is asymptotically invariant. In the present article we extend this characterization of amenability to measured groupoids. It implies, in particular, that the amenability of a measure class preserving group action is equivalent to the existence of a random environment on the group parameterized by the action space, and such that the tail of the random walk in almost every environment is trivial.


Sign in / Sign up

Export Citation Format

Share Document