Weakly Compact, Operator-Valued Derivations of Type I Von Neumann Algebras

1984 ◽  
Vol 36 (3) ◽  
pp. 436-457
Author(s):  
Steve Wright

In [18], the author initiated an investigation of compact, Banach-module-valued derivations of C*-algebras. In collaboration with C. A. Akemann [3] and S.-K. Tsui [16], he determined the structure of all compact and weakly compact, A-valued derivations of a C*-algebra A, and of all compact, B(H)-valued derivations of a C*-subalgebra of B(H), the algebra of bounded linear operators on a Hilbert space H. In this paper, we begin the study of weakly compact, B(H)-valued derivations of C*-subalgebras of B(H).Let R be a C*-subalgebra of B(H), δ:R → B(H) a weakly compact derivation, i.e., a weakly compact linear map which hasSince δ has a unique weakly compact extension to a derivation of the closure of R in the weak operator topology (WOT) on B(H) (consult the proof of Theorem 3.1 of [16]), we may assume with no loss of generality that R is a von Neumann subalgebra of B(H). In this paper, we determine in Lemma 4.1 and Theorems 4.3 and 4.10 the structure of δ when R is type I, using I. E. Segal's multiplicity theory [14] for type I von Neumann algebras and results of E. Christensen [6], [7] on B(H)-valued derivations of von Neumann algebras.

2018 ◽  
Vol 68 (1) ◽  
pp. 163-170 ◽  
Author(s):  
Fangfang Zhao ◽  
Changjing Li

AbstractLetB(H) be the algebra of all bounded linear operators on a complex Hilbert spaceHand 𝓐 ⊆B(H) be a von Neumann algebra with no central summands of typeI1. ForA,B∈ 𝓐, define byA∙B=AB+BA∗a new product ofAandB. In this article, it is proved that a map Φ: 𝓐 →B(H) satisfies Φ(A∙B∙C) = Φ(A) ∙B∙C+A∙ Φ(B) ∙C+A∙B∙Φ(C) for allA,B,C∈ 𝓐 if and only if Φ is an additive *-derivation.


1971 ◽  
Vol 23 (5) ◽  
pp. 849-856 ◽  
Author(s):  
P. K. Tam

The following (so-called unitary equivalence) problem is of paramount importance in the theory of operators: given two (bounded linear) operators A1, A2 on a (complex) Hilbert space , determine whether or not they are unitarily equivalent, i.e., whether or not there is a unitary operator U on such that U*A1U = A2. For normal operators this question is completely answered by the classical multiplicity theory [7; 11]. Many authors, in particular, Brown [3], Pearcy [9], Deckard [5], Radjavi [10], and Arveson [1; 2], considered the problem for non-normal operators and have obtained various significant results. However, most of their results (cf. [13]) deal only with operators which are of type I in the following sense [12]: an operator, A, is of type I (respectively, II1, II∞, III) if the von Neumann algebra generated by A is of type I (respectively, II1, II∞, III).


1989 ◽  
Vol 32 (2) ◽  
pp. 317-327 ◽  
Author(s):  
Erik Christensen ◽  
Allan M. Sinclair

Milutin's Theorem states that if X and Y are uncountable metrizable compact Hausdorff spaces, then C(X) and C(Y) are isomorphic as Banach spaces [15, p. 379]. Thus there is only one isomorphism class of such Banach spaces. There is also an extensive theory of the Banach–Mazur distance between various classes of classical Banach spaces with the deepest results depending on probabilistic and asymptotic estimates [18]. Lindenstrauss, Haagerup and possibly others know that as Banach spaceswhere H is the infinite dimensional separable Hilbert space, R is the injective II 1-factor on H, and ≈ denotes Banach space isomorphism. Haagerup informed us of this result, and suggested considering completely bounded isomorphisms; it is a pleasure to acknowledge his suggestion. We replace Banach space isomorphisms by completely bounded isomorphisms that preserve the linear structure and involution, but not the product. One of the two theorems of this paper is a strengthened version of the above result: if N is an injective von Neumann algebra with separable predual and not finite type I of bounded degree, then N is completely boundedly isomorphic to B(H). The methods used are similar to those in Banach space theory with complete boundedness needing a little care at various points in the argument. Extensive use is made of the conditional expectation available for injective algebras, and the methods do not apply to the interesting problems of completely bounded isomorphisms of non-injective von Neumann algebras (see [4] for a study of the completely bounded approximation property).


1960 ◽  
Vol 3 (3) ◽  
pp. 273-288 ◽  
Author(s):  
Israel Halperin

What is a von Neumann algebra? What is a factor (i) of type I, (ii) of type II, (iii) of type III? What is a projection geometry? And finally, what is a continuous geometry?The questions recall some of the most brilliant mathematical work of the past 30 years, work which was done by John von Neumann, partly in collaboration with F. J. Murray, and which grew out of von Neumann1 s analysis of linear operators in Hilbert space.


2021 ◽  
Vol 111 (4) ◽  
Author(s):  
Andrzej Łuczak

AbstractSome features of the notion of sufficiency in quantum statistics are investigated. Three kinds of this notion are considered: plain sufficiency (called simply: sufficiency), strong sufficiency and Umegaki’s sufficiency. It is shown that for a finite von Neumann algebra with a faithful family of normal states the minimal sufficient von Neumann subalgebra is sufficient in Umegaki’s sense. Moreover, a proper version of the factorization theorem of Jenčová and Petz is obtained. The structure of the minimal sufficient subalgebra is described in the case of pure states on the full algebra of all bounded linear operators on a Hilbert space.


2019 ◽  
Vol 19 (01) ◽  
pp. 2050011 ◽  
Author(s):  
B. Ungor ◽  
S. Halicioglu ◽  
A. Harmanci ◽  
J. Marovt

Let [Formula: see text] be a ring. Motivated by a generalization of a well-known minus partial order to Rickart rings, we introduce a new relation on the power set [Formula: see text] of [Formula: see text] and show that this relation, which we call “the minus order on [Formula: see text]”, is a partial order when [Formula: see text] is a Baer ring. We similarly introduce and study properties of the star, the left-star, and the right-star partial orders on the power sets of Baer ∗-rings. We show that some ideals generated by projections of a von Neumann regular and Baer ∗-ring [Formula: see text] form a lattice with respect to the star partial order on [Formula: see text]. As a particular case, we present characterizations of these orders on the power set of [Formula: see text], the algebra of all bounded linear operators on a Hilbert space [Formula: see text].


2004 ◽  
Vol 56 (5) ◽  
pp. 983-1021 ◽  
Author(s):  
Marius Junge

AbstractLet (ℳi)i∈I, be families of von Neumann algebras and be ultrafilters in I, J, respectively. Let 1 ≤ p < ∞ and n ∈ ℕ. Let x1,… ,xn in ΠLp(ℓi ) and y1,… ,yn in be bounded families. We show the following equalityFor p = 1 this Fubini type result is related to the local reflexivity of duals of C*-algebras. This fails for p = ∞.


1969 ◽  
Vol 16 (3) ◽  
pp. 227-232 ◽  
Author(s):  
J. C. Alexander

In (4) Vala proves a generalization of Schauder's theorem (3) on the compactness of the adjoint of a compact linear operator. The particular case of Vala's result that we shall be concerned with is as follows. Let t1 and t2 be non-zero bounded linear operators on the Banach spaces Y and X respectively, and denote by 1T2 the operator on B(X, Y) defined by


1988 ◽  
Vol 31 (1) ◽  
pp. 127-144 ◽  
Author(s):  
B. P. Rynne

Let n≧1 be an integer and suppose that for each i= 1,…,n, we have a Hilbert space Hi and a set of bounded linear operators Ti, Vij:Hi→Hi, j=1,…,n. We define the system of operatorswhere λ=(λ1,…,λn)∈ℂn. Coupled systems of the form (1.1) are called multiparameter systems and the spectral theory of such systems has been studied in many recent papers. Most of the literature on multiparameter theory deals with the case where the operators Ti and Vij are self-adjoint (see [14]). The non self-adjoint case, which has received relatively little attention, is discussed in [12] and [13].


Sign in / Sign up

Export Citation Format

Share Document