compact extension
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

10.37236/3715 ◽  
2014 ◽  
Vol 21 (3) ◽  
Author(s):  
Randall McCutcheon ◽  
Alistair Windsor

Let $\Omega = \bigoplus_{i=1}^\infty \mathbb{Z}_3$ and $e_i = (0, \dots, 0 , 1, 0, \dots)$ where the $1$ occurs in the $i$-th coordinate. Let $\mathscr{F}=\{ \alpha \subset \mathbb{N} : \varnothing \neq \alpha, \alpha \text{ is finite} \}$. There is a natural inclusion of $\mathscr{F}$ into $\Omega$ where $\alpha \in \mathscr{F}$ is mapped to $e_\alpha = \sum_{i \in \alpha} e_i$. We give a new proof that if $E \subset \Omega$ with $d^*(E) >0$ then there exist $\omega \in \Omega$ and $\alpha \in \mathscr{F}$ such that \[ \{ \omega, \omega+ e_\alpha, \omega + 2 e_\alpha \} \subset E.\]Our proof establishes that for the ergodic reformulation of the problem there is a characteristic factor that is a one step compact extension of the Kronecker factor.


2013 ◽  
Vol 1 ◽  
pp. 60-79
Author(s):  
Oleg Gutik ◽  
Kateryna Pavlyk

AbstractIn the paper we investigate topological properties of a topological Brandt λ0-extension B0λ(S) of a semitopological monoid S with zero. In particular we prove that for every Tychonoff pseudocompact (resp., Hausdorff countably compact, Hausdorff compact) semitopological monoid S with zero there exists a unique semiregular pseudocompact (resp., Hausdorff countably compact, Hausdorff compact) extension B0λ(S) of S and establish their Stone-Cˇ ech and Bohr compactifications. We also describe a category whose objects are ingredients in the constructions of pseudocompact (resp., countably compact, sequentially compact, compact) topological Brandt λ0- extensions of pseudocompact (resp., countably compact, sequentially compact, compact) semitopological monoids with zeros.


1984 ◽  
Vol 36 (3) ◽  
pp. 436-457
Author(s):  
Steve Wright

In [18], the author initiated an investigation of compact, Banach-module-valued derivations of C*-algebras. In collaboration with C. A. Akemann [3] and S.-K. Tsui [16], he determined the structure of all compact and weakly compact, A-valued derivations of a C*-algebra A, and of all compact, B(H)-valued derivations of a C*-subalgebra of B(H), the algebra of bounded linear operators on a Hilbert space H. In this paper, we begin the study of weakly compact, B(H)-valued derivations of C*-subalgebras of B(H).Let R be a C*-subalgebra of B(H), δ:R → B(H) a weakly compact derivation, i.e., a weakly compact linear map which hasSince δ has a unique weakly compact extension to a derivation of the closure of R in the weak operator topology (WOT) on B(H) (consult the proof of Theorem 3.1 of [16]), we may assume with no loss of generality that R is a von Neumann subalgebra of B(H). In this paper, we determine in Lemma 4.1 and Theorems 4.3 and 4.10 the structure of δ when R is type I, using I. E. Segal's multiplicity theory [14] for type I von Neumann algebras and results of E. Christensen [6], [7] on B(H)-valued derivations of von Neumann algebras.


1982 ◽  
Vol 47 (3) ◽  
pp. 572-586
Author(s):  
John T. Baldwin ◽  
Douglas E. Miller

One of the first results in model theory [12] asserts that a first-order sentence is preserved in extensions if and only if it is equivalent to an existential sentence.In the first section of this paper, we analyze a natural program for extending this result to a class of languages extending first-order logic, notably including L(Q) and L(aa), respectively the languages with the quantifiers “there exist un-countably many” and “for almost all countable subsets”.In the second section we answer a question of Bruce [3] by showing that this program cannot resolve the question for L(Q). We also consider whether the natural class of “generalized Σ-sentences” in L(Q) characterizes the class of sentences preserved in extensions, refuting the relativized version but leaving the unrestricted question open.In the third section we show that the analogous class of L(aa)-sentences preserved in extensions does not include (up to elementary equivalence) all such sentences. This particular candidate class was nominated, rather tentatively, by Bruce [3].In the fourth section we show that under rather general conditions, if L is a countably compact extension of first-order logic and T is an ℵ1-categorical first-order theory, then L is trivial relative to T.


1974 ◽  
Vol 19 (2) ◽  
pp. 105-108
Author(s):  
P. A. Firby

If X and Y are Tychonoff spaces then the continuous function f mapping X onto Y is said to be compact (perfect, or proper) if it is closed and point inverses are compact. If h is a continuous function mapping X onto Y then by a compactification of h we mean a pair (X*, h*) where X* is Tychonoff and contains X as a dense subspace, and where h*: X*→Y is a compact extension of h. The idea of a mapping compactification first appeared in (7). In (1) it was shown that any compactification of X determines a compactification of h, and that any compactification of h can be determined in this way. This idea was then developed in (2) and (3).


Sign in / Sign up

Export Citation Format

Share Document