The Fourier Transforms of Smooth Measures on Hypersurfaces of Rn + 1

1986 ◽  
Vol 38 (2) ◽  
pp. 328-359 ◽  
Author(s):  
Bernard Marshall

The Fourier transform of the surface measure on the unit sphere in Rn + 1, as is well-known, equals the Bessel functionIts behaviour at infinity is described by an asymptotic expansionThe purpose of this paper is to obtain such an expression for surfaces Σ other than the unit sphere. If the surface Σ is a sufficiently smooth compact n-surface in Rn + 1 with strictly positive Gaussian curvature everywhere then with only minor changes in the main term, such an asymptotic expansion exists. This result was proved by E. Hlawka in [3]. A similar result concerned with the minimal smoothness of Σ was later obtained by C. Herz [2].

1965 ◽  
Vol 5 (3) ◽  
pp. 289-298 ◽  
Author(s):  
James L. Griffith

The Fourier transformF(y) of a functionf(t) inL1(Ek) whereEkis thek-dimensional cartesian space will be defined by.


1979 ◽  
Vol 31 (6) ◽  
pp. 1281-1292 ◽  
Author(s):  
James Stewart

1. Introduction. One of the basic objects of study in harmonic analysis is the Fourier transform (or Fourier-Stieltjes transform) μ of a bounded (complex) measure μ on the real line R:(1.1)More generally, if μ is a bounded measure on a locally compact abelian group G, then its Fourier transform is the function(1.2)where Ĝ is the dual group of G and One answer to the question “Which functions can be represented as Fourier transforms of bounded measures?” was given by the following criterion due to Schoenberg [11] for the real line and Eberlein [5] in general: f is a Fourier transform of a bounded measure if and only if there is a constant M such that(1.3)for all ϕ ∈ L1(G) where


A formula is developed that gives the asymptotic expansion of the Fourier transform of a function whose behaviour near the origin is given by a general asymptotic series. The result is an extension of a theorem due to Olver, who obtained a kind of analogue for Fourier transforms of Watson’s lemma for Laplace transforms. The method adopted utilizes a result due to Erdelyi on Laplace transforms and depends for its success on a novel technique of evading the appearance of divergent integrals in such problems.


1936 ◽  
Vol 32 (2) ◽  
pp. 321-327 ◽  
Author(s):  
A. Zygmund

1. Let f(x) be a complex function belonging to LP (−∞, ∞); i.e. let f(x) be measurable, and |f(x)|p integrable, over (−∞, ∞). The functionis called the Fourier transform of f(x), if the integral on the right exists, in some sense, for almost every value of y. It is well known that, if 1 ≤ p ≤ 2, the integral (1) converges in mean, with index p′ = p/(p – l)† i.e. thatwhere


1992 ◽  
Vol 111 (3) ◽  
pp. 525-529 ◽  
Author(s):  
Anthony Carbery

Let Σ ⊆ ℝn be a (compact) hypersurface with non-vanishing Gaussian curvature, with suitable parameterizations, also called Σ: U → ℝn (U open patches in ℝn−1). The restriction problem for Σ is the question of the a priori estimate (for f ∈ S(ℝ))(^denoting the Fourier transform). The Bochner-Riesz problem for Σ is the question of whether the functionsdefine Lp-bounded Fourier multiplier operators on ℝn in the range.


Author(s):  
G. H. Hardy

Suppose that n runs through all integral values, that (øn) is a system of normal orthogonal functions for the interval (−∞, ∞), and that ψn is the Fourier transform of øn. Then, by Parseval's theorem for Fourier transforms,and (ψn) is also a normal orthogonal system.


Author(s):  
M. Younus Bhat ◽  
Aamir H. Dar

The linear canonical transform (LCT) provides a unified treatment of the generalized Fourier transforms in the sense that it is an embodiment of several well-known integral transforms including the Fourier transform, fractional Fourier transform, Fresnel transform. Using this fascinating property of LCT, we, in this paper, constructed associated wavelet packets. First, we construct wavelet packets corresponding to nonuniform Multiresolution analysis (MRA) associated with LCT and then those corresponding to vector-valued nonuniform MRA associated with LCT. We investigate their various properties by means of LCT.


Geophysics ◽  
1985 ◽  
Vol 50 (9) ◽  
pp. 1500-1501
Author(s):  
B. N. P. Agarwal ◽  
D. Sita Ramaiah

Bhimasankaram et al. (1977) used Fourier spectrum analysis for a direct approach to the interpretation of gravity anomaly over a finite inclined dike. They derived several equations from the real and imaginary components and from the amplitude and phase spectra to relate various parameters of the dike. Because the width 2b of the dike (Figure 1) appears only in sin (ωb) term—ω being the angular frequency—they determined its value from the minima/zeroes of the amplitude spectra. The theoretical Fourier spectrum uses gravity field data over an infinite distance (length), whereas field observations are available only for a limited distance. Thus, a set of observational data is viewed as a product of infinite‐distance data with an appropriate window function. Usually, a rectangular window of appropriate distance (width) and of unit magnitude is chosen for this purpose. The Fourier transform of the finite‐distance and discrete data is thus represented by convolution operations between Fourier transforms of the infinite‐distance data, the window function, and the comb function. The combined effect gives a smooth, weighted average spectrum. Thus, the Fourier transform of actual observed data may differ substantially from theoretic data. The differences are apparent for low‐ and high‐frequency ranges. As a result, the minima of the amplitude spectra may change considerably, thereby rendering the estimate of the width of the dike unreliable from the roots of the equation sin (ωb) = 0.


1984 ◽  
Vol 36 (4) ◽  
pp. 685-717 ◽  
Author(s):  
Charles F. Dunkl

The measure (x1x2x3)2adm(x) on the unit sphere in R3 is invariant under sign-changes and permutations of the coordinates; here dm denotes the rotation-invariant surface measure. The more general measurecorresponds to the measureon the triangle(where ). Appell ([1] Chap. VI) constructed a basis of polynomials of degree n in v1, v2 orthogonal to all polynomials of lower degree, and a biorthogonal set for the case γ = 0. Later Fackerell and Littler [6] found a biorthogonal set for Appell's polynomials for γ ≠ 0. Meanwhile Pronol [10] had constructed an orthogonal basis in terms of Jacobi polynomials.


1994 ◽  
Vol 36 (3) ◽  
pp. 309-311
Author(s):  
Yibiao Pan

AbstractWe use a simple approximation method to prove the Holder continuity of the generalized de Rham functions.1. Consider the following dilatation equationwhere |α|<l/2. Suppose that f is an integrable solution of (1); then f must satisfywhere is the Fourier transform of f, andwhich immediately leads to


Sign in / Sign up

Export Citation Format

Share Document