Fourier Transforms of Unbounded Measures

1979 ◽  
Vol 31 (6) ◽  
pp. 1281-1292 ◽  
Author(s):  
James Stewart

1. Introduction. One of the basic objects of study in harmonic analysis is the Fourier transform (or Fourier-Stieltjes transform) μ of a bounded (complex) measure μ on the real line R:(1.1)More generally, if μ is a bounded measure on a locally compact abelian group G, then its Fourier transform is the function(1.2)where Ĝ is the dual group of G and One answer to the question “Which functions can be represented as Fourier transforms of bounded measures?” was given by the following criterion due to Schoenberg [11] for the real line and Eberlein [5] in general: f is a Fourier transform of a bounded measure if and only if there is a constant M such that(1.3)for all ϕ ∈ L1(G) where

1985 ◽  
Vol 31 (2) ◽  
pp. 171-179
Author(s):  
Hwai-chiuan Wang

In this article we give a new proof of the theorem that a positive even convex function on the real line, which vanishes at infinity, is the Fourier transform of an integrable function. Related results in several variables are also proved. As an application of our results we solve the factorization problem of Sobolev algebras.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1060
Author(s):  
Enrico Celeghini ◽  
Manuel Gadella ◽  
Mariano A. del del Olmo

We introduce a multi-parameter family of bases in the Hilbert space L2(R) that are associated to a set of Hermite functions, which also serve as a basis for L2(R). The Hermite functions are eigenfunctions of the Fourier transform, a property that is, in some sense, shared by these “generalized Hermite functions”. The construction of these new bases is grounded on some symmetry properties of the real line under translations, dilations and reflexions as well as certain properties of the Fourier transform. We show how these generalized Hermite functions are transformed under the unitary representations of a series of groups, including the Weyl–Heisenberg group and some of their extensions.


1973 ◽  
Vol 9 (1) ◽  
pp. 73-82 ◽  
Author(s):  
U.B. Tewari ◽  
A.K. Gupta

Let G be a locally compact abelian group and Ĝ be its dual group. For 1 ≤ p < ∞, let Ap (G) denote the set of all those functions in L1(G) whose Fourier transforms belong to Lp (Ĝ). Let M(Ap (G)) denote the set of all functions φ belonging to L∞(Ĝ) such that is Fourier transform of an L1-function on G whenever f belongs to Ap (G). For 1 ≤ p < q < ∞, we prove that Ap (G) Aq(G) provided G is nondiscrete. As an application of this result we prove that if G is an infinite compact abelian group and 1 ≤ p ≤ 4 then lp (Ĝ) M(Ap(G)), and if p > 4 then there exists ψ є lp (Ĝ) such that ψ does not belong to M(Ap (G)).


1965 ◽  
Vol 5 (3) ◽  
pp. 289-298 ◽  
Author(s):  
James L. Griffith

The Fourier transformF(y) of a functionf(t) inL1(Ek) whereEkis thek-dimensional cartesian space will be defined by.


1986 ◽  
Vol 38 (2) ◽  
pp. 328-359 ◽  
Author(s):  
Bernard Marshall

The Fourier transform of the surface measure on the unit sphere in Rn + 1, as is well-known, equals the Bessel functionIts behaviour at infinity is described by an asymptotic expansionThe purpose of this paper is to obtain such an expression for surfaces Σ other than the unit sphere. If the surface Σ is a sufficiently smooth compact n-surface in Rn + 1 with strictly positive Gaussian curvature everywhere then with only minor changes in the main term, such an asymptotic expansion exists. This result was proved by E. Hlawka in [3]. A similar result concerned with the minimal smoothness of Σ was later obtained by C. Herz [2].


1936 ◽  
Vol 32 (2) ◽  
pp. 321-327 ◽  
Author(s):  
A. Zygmund

1. Let f(x) be a complex function belonging to LP (−∞, ∞); i.e. let f(x) be measurable, and |f(x)|p integrable, over (−∞, ∞). The functionis called the Fourier transform of f(x), if the integral on the right exists, in some sense, for almost every value of y. It is well known that, if 1 ≤ p ≤ 2, the integral (1) converges in mean, with index p′ = p/(p – l)† i.e. thatwhere


Sign in / Sign up

Export Citation Format

Share Document