On the Hahn-Banach Extension Property

1970 ◽  
Vol 13 (1) ◽  
pp. 9-13
Author(s):  
Ting-On To

In this paper, we consider real linear spaces. By (V:‖ ‖) we mean a normed (real) linear space V with norm ‖ ‖. By the statement "V has the (Y, X) norm preserving (Hahn-Banach) extension property" we mean the following: Y is a subspace of the normed linear space X, V is a normed linear space, and any bounded linear function f: Y → V has a linear extension F: X → V such that ‖F‖ = ‖f‖. By the statement "V has the unrestricted norm preserving (Hahn-Banach) extension property" we mean that V has the (Y, X) norm preserving extension property for all Y and X with Y ⊂ X.

1966 ◽  
Vol 9 (4) ◽  
pp. 433-441 ◽  
Author(s):  
George Elliott ◽  
Israel Halperin

In this paper we shall say “E has the (F, G) (extension) property” to mean the following: F is a subspace of the real normed linear space G, E is a real normed linear space, and any bounded linear mapping F→E has a linear extension G→E with the same bound (equivalently, every linear mapping F→E of bound 1 has a linear extension G→E with bound 1).


1968 ◽  
Vol 16 (2) ◽  
pp. 135-144
Author(s):  
G. J. O. Jameson

Let X be a partially ordered linear space, i.e. a real linear space with a reflexive, transitive relation ≦ such that


2003 ◽  
Vol 46 (2) ◽  
pp. 216-228 ◽  
Author(s):  
Chi-Kwong Li ◽  
Leiba Rodman ◽  
Peter Šemrl

AbstractLet H be a complex Hilbert space, and be the real linear space of bounded selfadjoint operators on H. We study linear maps ϕ: → leaving invariant various properties such as invertibility, positive definiteness, numerical range, etc. The maps ϕ are not assumed a priori continuous. It is shown that under an appropriate surjective or injective assumption ϕ has the form , for a suitable invertible or unitary T and ξ ∈ {1, −1}, where Xt stands for the transpose of X relative to some orthonormal basis. Examples are given to show that the surjective or injective assumption cannot be relaxed. The results are extended to complex linear maps on the algebra of bounded linear operators on H. Similar results are proved for the (real) linear space of (selfadjoint) operators of the form αI + K, where α is a scalar and K is compact.


1966 ◽  
Vol 15 (1) ◽  
pp. 11-18 ◽  
Author(s):  
T. T. West

Let X be an infinite dimensional normed linear space over the complex field Z. X will not be complete, in general, and its completion will be denoted by . If ℬ(X) is the algebra of all bounded linear operators in X then T ∈ ℬ(X) has a unique extension and . The resolvent set of T ∈ ℬ(X) is defined to beand the spectrum of T is the complement of ρ(T) in Z.


2018 ◽  
Vol 15 (01) ◽  
pp. 65-83
Author(s):  
Nabanita Konwar ◽  
Ayhan Esi ◽  
Pradip Debnath

Contraction mappings provide us with one of the major sources of fixed point theorems. In many mathematical models, the existence of a solution may often be described by the existence of a fixed point for a suitable map. Therefore, study of such mappings and fixed point results becomes well motivated in the setting of intuitionistic fuzzy normed linear spaces (IFNLSs) as well. In this paper, we define some new contraction mappings and establish fixed point theorems in a complete IFNLS. Our results unify and generalize several classical results existing in the literature.


1980 ◽  
Vol 23 (3) ◽  
pp. 347-354 ◽  
Author(s):  
Robert H. Lohman

AbstractThe geometric notions of a gap and gap points between “concentric” spheres in a normed linear space are introduced and studied. The existence of gap points characterizes finitedimensional spaces. General conditions are given under which an infinite-dimensional normed linear space admits concentric spheres such that both these spheres and their dual spheres fail to have gap points.


2013 ◽  
Vol 11 (7) ◽  
Author(s):  
Hiroyasu Mizuguchi ◽  
Kichi-Suke Saito ◽  
Ryotaro Tanaka

AbstractRecently, Jiménez-Melado et al. [Jiménez-Melado A., Llorens-Fuster E., Mazcuñán-Navarro E.M., The Dunkl-Williams constant, convexity, smoothness and normal structure, J. Math. Anal. Appl., 2008, 342(1), 298–310] defined the Dunkl-Williams constant DW(X) of a normed linear space X. In this paper we present some characterizations of this constant. As an application, we calculate DW(ℓ2-ℓ∞) in the Day-James space ℓ2-ℓ∞.


1971 ◽  
Vol 12 (3) ◽  
pp. 301-308 ◽  
Author(s):  
M. Edelstein ◽  
J. E. Lewis

Let S be a nonempty subset of a normed linear space E. A point s0 of S is called a farthest point if for some x ∈ E, . The set of all farthest points of S will be denoted far (S). If S is compact, the continuity of distance from a point x of E implies that far (S) is nonempty.


1977 ◽  
Vol 77 (1) ◽  
pp. 181-185 ◽  
Author(s):  
Jacques Bair

Sign in / Sign up

Export Citation Format

Share Document