Linear Normed Spaces with Extension Property

1966 ◽  
Vol 9 (4) ◽  
pp. 433-441 ◽  
Author(s):  
George Elliott ◽  
Israel Halperin

In this paper we shall say “E has the (F, G) (extension) property” to mean the following: F is a subspace of the real normed linear space G, E is a real normed linear space, and any bounded linear mapping F→E has a linear extension G→E with the same bound (equivalently, every linear mapping F→E of bound 1 has a linear extension G→E with bound 1).

1970 ◽  
Vol 13 (1) ◽  
pp. 9-13
Author(s):  
Ting-On To

In this paper, we consider real linear spaces. By (V:‖ ‖) we mean a normed (real) linear space V with norm ‖ ‖. By the statement "V has the (Y, X) norm preserving (Hahn-Banach) extension property" we mean the following: Y is a subspace of the normed linear space X, V is a normed linear space, and any bounded linear function f: Y → V has a linear extension F: X → V such that ‖F‖ = ‖f‖. By the statement "V has the unrestricted norm preserving (Hahn-Banach) extension property" we mean that V has the (Y, X) norm preserving extension property for all Y and X with Y ⊂ X.


1966 ◽  
Vol 15 (1) ◽  
pp. 11-18 ◽  
Author(s):  
T. T. West

Let X be an infinite dimensional normed linear space over the complex field Z. X will not be complete, in general, and its completion will be denoted by . If ℬ(X) is the algebra of all bounded linear operators in X then T ∈ ℬ(X) has a unique extension and . The resolvent set of T ∈ ℬ(X) is defined to beand the spectrum of T is the complement of ρ(T) in Z.


2011 ◽  
Vol 42 (4) ◽  
pp. 483-492
Author(s):  
Loredana Ciurdariu

The aim of this paper is to obtain new versions of the reverse of the generalized triangle inequalities given in \cite{SSDNA}, %[4],and \cite{SSDPR} %[5] if the pair $(a_i,x_i),\;i\in\{1,\ldots,n\}$ from Theorem 1 of \cite{SSDNA} %[4] belongs to ${\mathbb C}\times\mathcal H $, where $\mathcal H$ is a Loynes $Z$-space instead of ${\mathbb K}\times X$, $X$ being a normed linear space and ${\mathbb K}$ is the field of scalars. By comparison, in \cite{SSDNA} %[4] the pair $(a_i,x_i),\;i\in\{1,\ldots,n\}$ belongs to $A^2$, where $A$ is a normed algebra over the real or complex number field ${\mathbb K}.$ The results will be given in Theorem 1, Theorem 3, Remark 2 and Corollary 3 which represent other interesting variants of Theorem 2.1, Remark 2.2, Theorem 3.2 and Theorem 3.4., see \cite{SSDNA}. %[4].


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Bhuwan Prasad Ojha ◽  
Prakash Muni Bajracharya ◽  
Vishnu Narayan Mishra

This paper generalizes the special case of the Carlsson orthogonality in terms of the 2-HH norm in real normed linear space. Dragomir and Kikianty (2010) proved in their paper that the Pythagorean orthogonality is unique in any normed linear space, and isosceles orthogonality is unique if and only if the space is strictly convex. This paper deals with the complete proof of the uniqueness of the new orthogonality through the medium of the 2-HH norm. We also proved that the Birkhoff and Robert orthogonality via the 2-HH norm are equivalent, whenever the underlying space is a real inner-product space.


1998 ◽  
Vol 40 (2) ◽  
pp. 291-296 ◽  
Author(s):  
Viktor Burenkov ◽  
Bert-Wolfgang Schulze ◽  
Nikolai N. Tarkhanov

AbstractWe consider a real-valued function r = M(t) on the real axis, such that M(t) < 0 for t < 0. Under appropriate assumptions on M, the pull-back operator M* gives rise to a transform of Sobolev spaces Ws.p (-∞, 0) that restricts to a transform of Ws.p(-∞, ∞). We construct a bounded linear extension operator Ws.p(-∞, 0) → Ws.p(−∞, ∞), commuting with this transform.


2015 ◽  
Vol 23 (4) ◽  
pp. 279-288
Author(s):  
Roland Coghetto

Summary Hölzl et al. showed that it was possible to build “a generic theory of limits based on filters” in Isabelle/HOL [22], [7]. In this paper we present our formalization of this theory in Mizar [6]. First, we compare the notions of the limit of a family indexed by a directed set, or a sequence, in a metric space [30], a real normed linear space [29] and a linear topological space [14] with the concept of the limit of an image filter [16]. Then, following Bourbaki [9], [10] (TG.III, §5.1 Familles sommables dans un groupe commutatif), we conclude by defining the summable families in a commutative group (“additive notation” in [17]), using the notion of filters.


2003 ◽  
Vol 46 (2) ◽  
pp. 216-228 ◽  
Author(s):  
Chi-Kwong Li ◽  
Leiba Rodman ◽  
Peter Šemrl

AbstractLet H be a complex Hilbert space, and be the real linear space of bounded selfadjoint operators on H. We study linear maps ϕ: → leaving invariant various properties such as invertibility, positive definiteness, numerical range, etc. The maps ϕ are not assumed a priori continuous. It is shown that under an appropriate surjective or injective assumption ϕ has the form , for a suitable invertible or unitary T and ξ ∈ {1, −1}, where Xt stands for the transpose of X relative to some orthonormal basis. Examples are given to show that the surjective or injective assumption cannot be relaxed. The results are extended to complex linear maps on the algebra of bounded linear operators on H. Similar results are proved for the (real) linear space of (selfadjoint) operators of the form αI + K, where α is a scalar and K is compact.


2015 ◽  
Vol 21 (1) ◽  
Author(s):  
Masoumeh Aghajani ◽  
Andrzej Smajdor

AbstractThe existence of additive selections of additive correspondences was investigated in [Ark. Mat. 4 (1960), 87–97], [Rev. Roumaine Math. Pures Appl. 28 (1983), 239–242.], [Math. Ser. Univ. Novi Sad 18 (1988), 143–148] and other papers. In this article, we find an existence theorem for additive selections of additive correspondences with convex compact values in a real normed linear space defined on an open convex cone of a real separable normed space.


Sign in / Sign up

Export Citation Format

Share Document