Integral Domains which have Finite Character Locally

1974 ◽  
Vol 17 (4) ◽  
pp. 553-558
Author(s):  
Kenneth Pacholke

AbstractIn recent papers Brewer and Mott have studied integral domains which have finite character globally. This paper concentrates on domains which have finite character locally. Examples include global finite character domains plus Prufer, almost Dedekind, and almost Krull domains. General properties are given, including a valuation-theoretic characterization. The effect of requiring essential and/or rank one valuations is also studied.

2021 ◽  
Vol 15 (3) ◽  
Author(s):  
André C. M. Ran ◽  
Michał Wojtylak

AbstractGeneral properties of eigenvalues of $$A+\tau uv^*$$ A + τ u v ∗ as functions of $$\tau \in {\mathbb {C} }$$ τ ∈ C or $$\tau \in {\mathbb {R} }$$ τ ∈ R or $$\tau ={{\,\mathrm{{e}}\,}}^{{{\,\mathrm{{i}}\,}}\theta }$$ τ = e i θ on the unit circle are considered. In particular, the problem of existence of global analytic formulas for eigenvalues is addressed. Furthermore, the limits of eigenvalues with $$\tau \rightarrow \infty $$ τ → ∞ are discussed in detail. The following classes of matrices are considered: complex (without additional structure), real (without additional structure), complex H-selfadjoint and real J-Hamiltonian.


1972 ◽  
Vol 24 (6) ◽  
pp. 1170-1177 ◽  
Author(s):  
William Heinzer ◽  
Jack Ohm

Throughout this paper R and D will denote integral domains with the same quotient field K. A set of integral domains {Di} i∊I with quotient field K will be said to have FC (“finite character” or “finiteness condition“) if 0 ≠ ξ ∊ K implies ξ is a unit of Di for all but finitely many i. If ∩i∊IDi also has quotient field K, then {Di} has FC if and only if every non-zero element in ∩i∊IDi is a non-unit in at most finitely many Di. A non-empty set {Vi}i∊:I of rank one valuation rings with quotient field K will be called a defining family of real R-representativesfor D if {Vi} i∊:I has FC, R (⊄ ∩i∊IVi, and D = R∩ (∩i∊I Vi).


2020 ◽  
Vol 27 (02) ◽  
pp. 287-298
Author(s):  
Gyu Whan Chang ◽  
HwanKoo Kim

Let D be an integral domain with quotient field K, [Formula: see text] be the integral closure of D in K, and D[w] be the w-integral closure of D in K; so [Formula: see text], and equality holds when D is Noetherian or dim(D) = 1. The Mori–Nagata theorem states that if D is Noetherian, then [Formula: see text] is a Krull domain; it has also been investigated when [Formula: see text] is a Dedekind domain. We study integral domains D such that D[w] is a Krull domain. We also provide an example of an integral domain D such that [Formula: see text], t-dim(D) = 1, [Formula: see text] is a Prüfer v-multiplication domain with t-dim([Formula: see text]) = 2, and D[w] is a UFD.


1982 ◽  
Vol 34 (1) ◽  
pp. 196-215 ◽  
Author(s):  
D. D. Anderson ◽  
David F. Anderson

Let R = ⊕α∊гRα be an integral domain graded by an arbitrary torsionless grading monoid Γ. In this paper we consider to what extent conditions on the homogeneous elements or ideals of R carry over to all elements or ideals of R. For example, in Section 3 we show that if each pair of nonzero homogeneous elements of R has a GCD, then R is a GCD-domain. This paper originated with the question of when a graded UFD (every homogeneous element is a product of principal primes) is a UFD. If R is Z+ or Z-graded, it is known that a graded UFD is actually a UFD, while in general this is not the case. In Section 3 we consider graded GCD-domains, in Section 4 graded UFD's, in Section 5 graded Krull domains, and in Section 6 graded π-domains.


1990 ◽  
Vol 88 (2) ◽  
pp. 233-250 ◽  
Author(s):  
Detlev Buchholz ◽  
Claudio D'Antoni ◽  
Roberto Longo

Sign in / Sign up

Export Citation Format

Share Document