One-Dimensional Monoid Rings with n-Generated Ideals

1993 ◽  
Vol 36 (3) ◽  
pp. 344-350 ◽  
Author(s):  
James S. Okon ◽  
J. Paul Vicknair

AbstractA commutative ring R is said to have the n-generator property if each ideal of R can be generated by n elements. Rings with the n-generator property have Krull dimension at most one. In this paper we consider the problem of determining when a one-dimensional monoid ring R[S] has the n-generator property where R is an artinian ring and S is a commutative cancellative monoid. As an application, we explicitly determine when such monoid rings have the three-generator property.

2017 ◽  
Vol 60 (2) ◽  
pp. 319-328
Author(s):  
Soheila Khojasteh ◽  
Mohammad Javad Nikmehr

AbstractLet R be a commutative ring with non-zero identity. In this paper, we introduce theweakly nilpotent graph of a commutative ring. The weakly nilpotent graph of R denoted by Γw(R) is a graph with the vertex set R* and two vertices x and y are adjacent if and only if x y ∊ N(R)*, where R* = R \ {0} and N(R)* is the set of all non-zero nilpotent elements of R. In this article, we determine the diameter of weakly nilpotent graph of an Artinian ring. We prove that if Γw(R) is a forest, then Γw(R) is a union of a star and some isolated vertices. We study the clique number, the chromatic number, and the independence number of Γw(R). Among other results, we show that for an Artinian ring R, Γw(R) is not a disjoint union of cycles or a unicyclic graph. For Artinan rings, we determine diam . Finally, we characterize all commutative rings R for which is a cycle, where is the complement of the weakly nilpotent graph of R.


2014 ◽  
Vol 21 (02) ◽  
pp. 249-256 ◽  
Author(s):  
G. Aalipour ◽  
S. Akbari ◽  
M. Behboodi ◽  
R. Nikandish ◽  
M. J. Nikmehr ◽  
...  

Let R be a commutative ring and 𝔸(R) be the set of ideals with non-zero annihilators. The annihilating-ideal graph of R is defined as the graph 𝔸𝔾(R) with the vertex set 𝔸(R)* = 𝔸(R)\{(0)} and two distinct vertices I and J are adjacent if and only if IJ = (0). Here, we present some results on the clique number and the chromatic number of the annihilating-ideal graph of a commutative ring. It is shown that if R is an Artinian ring and ω (𝔸𝔾(R)) = 2, then R is Gorenstein. Also, we investigate commutative rings whose annihilating-ideal graphs are complete or bipartite.


1999 ◽  
Vol 60 (1) ◽  
pp. 137-151
Author(s):  
Jim Coykendall ◽  
David E. Dobbs ◽  
Bernadette Mullins

A commutative ring R is said to be fragmented if each nonunit of R is divisible by all positive integral powers of some corresponding nonunit of R. It is shown that each fragmented ring which contains a nonunit non-zero-divisor has (Krull) dimension ∞. We consider the interplay between fragmented rings and both the atomic and the antimatter rings. After developing some results concerning idempotents and nilpotents in fragmented rings, along with some relevant examples, we use the “fragmented” and “locally fragmented” concepts to obtain new characterisations of zero-dimensional rings, von Neumann regular rings, finite products of fields, and fields.


2016 ◽  
Vol 26 (04) ◽  
pp. 763-773
Author(s):  
Otávio J. N. T. N. dos Santos ◽  
Irene N. Nakaoka

Given a commutative ring with identity [Formula: see text] and an [Formula: see text]-module [Formula: see text], a subset [Formula: see text] of [Formula: see text] is a cyclic covering of [Formula: see text], if this module is the union of the cyclic submodules [Formula: see text], where [Formula: see text]. Such covering is said to be irredundant, if no proper subset of [Formula: see text] is a cyclic covering of [Formula: see text]. In this work, an irredundant cyclic covering of [Formula: see text] is constructed for every Artinian commutative ring [Formula: see text]. As a consequence, a cyclic covering of minimal cardinality of [Formula: see text] is obtained for every finite commutative ring [Formula: see text], extending previous results in the literature.


2013 ◽  
Vol 13 (02) ◽  
pp. 1350083 ◽  
Author(s):  
A. ALHEVAZ ◽  
D. KIANI

One of the important properties of commutative rings, proved by McCoy [Remarks on divisors of zero, Amer. Math. Monthly49(5) (1942) 286–295], is that if two nonzero polynomials annihilate each other over a commutative ring then each polynomial has a nonzero annihilator in the base ring. Nielsen [Semi-commutativity and the McCoy condition, J. Algebra298(1) (2006) 134–141] generalizes this property to non-commutative rings. Let M be a monoid and σ be an automorphism of a ring R. For the continuation of McCoy property of non-commutative rings, in this paper, we extend the McCoy's theorem to skew Laurent power series ring R[[x, x-1; σ]] and skew monoid ring R * M over general non-commutative rings. Constructing various examples, we classify how these skew versions of McCoy property behaves under various ring extensions. Moreover, we investigate relations between these properties and other standard ring-theoretic properties such as zip rings and rings with Property (A). As a consequence we extend and unify several known results related to McCoy rings.


1978 ◽  
Vol 21 (3) ◽  
pp. 373-375 ◽  
Author(s):  
Ira J. Papick

Throughout this note, let R be a (commutative integral) domain with quotient field K. A domain S satisfying R ⊆ S ⊆ K is called an overring of R, and by dimension of a ring we mean Krull dimension. Recall [1] that a commutative ring is said to be coherent if each finitely generated ideal is finitely presented.In [2], as a corollary of a more general theorem, Davis showed that if each overring of a domain R is Noetherian, then the dimension of R is at most 1. (This corollary is the converse of a version of the Krull-Akizuki Theorem [5, Theorem 93], and can also be proved directly by using the existence of valuation rings dominating finite chains of prime ideals [4, Corollary 16.6].) It is our purpose to prove that if R is Noetherian and each overring of R is coherent, then the dimension of £ is at most 1. We shall also indicate some related questions and examples.


2016 ◽  
Vol 15 (09) ◽  
pp. 1650176 ◽  
Author(s):  
Charlie Beil

We introduce a theory of geometry for nonnoetherian commutative algebras with finite Krull dimension. In particular, we establish new notions of normalization and height: depiction (a special noetherian overring) and geometric codimension. The resulting geometries are algebraic varieties with positive-dimensional points, and are thus inherently nonlocal. These notions also give rise to new equivalent characterizations of noetherianity that are primarily geometric. We then consider an application to quiver algebras whose simple modules of maximal dimension are one dimensional at each vertex. We show that the vertex corner rings of [Formula: see text] are all isomorphic if and only if [Formula: see text] is noetherian, if and only if the center [Formula: see text] of [Formula: see text] is noetherian, if and only if [Formula: see text] is a finitely generated [Formula: see text]-module. Furthermore, we show that [Formula: see text] is depicted by a commutative algebra generated by the cycles in its quiver. We conclude with an example of a quiver algebra where projective dimension and geometric codimension, rather than height, coincide.


Author(s):  
D. Kirby

In (1) and (2) we studied a lattice of extension rings associated with a commutative ring R with identity. When R, M is a one-dimensional Cohen-Macaulay local ring the elements of are just those integral extensions of R contained in the total quotient ring T(R) and such that lengthR(S/R) is finite. Experiments with local rings of singular points on algebraic curves indicate that only the simplest singularities give rise to finite lattices. So the problem arises as to which local rings R give rise to which finite lattices. In later papers this problem will be investigated in detail, at least when R is of low embedding dimension. The purpose of the present note is to establish some general results which indicate the size of the problem.


2012 ◽  
Vol 04 (04) ◽  
pp. 1250059 ◽  
Author(s):  
TARIQ SHAH ◽  
ANTONIO APARECIDO DE ANDRADE

Let B[X; S] be a monoid ring with any fixed finite unitary commutative ring B and [Formula: see text] is the monoid S such that b = a + 1, where a is any positive integer. In this paper we constructed cyclic codes, BCH codes, alternant codes, Goppa codes, Srivastava codes through monoid ring [Formula: see text]. For a = 1, almost all the results contained in [16] stands as a very particular case of this study.


2015 ◽  
Vol 22 (spec01) ◽  
pp. 817-822 ◽  
Author(s):  
S. Akbari ◽  
E. Estaji ◽  
M.R. Khorsandi

Let R be a ring with non-zero identity. The unit graph G(R) of R is a graph with elements of R as its vertices and two distinct vertices a and b are adjacent if and only if a + b is a unit element of R. It was proved that if R is a commutative ring and 𝔪 is a maximal ideal of R such that |R/𝔪| = 2, then G(R) is a complete bipartite graph if and only if (R, 𝔪) is a local ring. In this paper we generalize this result by showing that if R is a ring (not necessarily commutative), then G(R) is a complete r-partite graph if and only if (R, 𝔪) is a local ring and r = |R/𝔪| = 2n for some n ∈ ℕ or R is a finite field. Among other results we show that if R is a left Artinian ring, 2 ∈ U(R) and the clique number of G(R) is finite, then R is a finite ring.


Sign in / Sign up

Export Citation Format

Share Document