Generalized D-symmetric Operators II

2011 ◽  
Vol 54 (1) ◽  
pp. 21-27 ◽  
Author(s):  
S. Bouali ◽  
M. Ech-chad

AbstractLet H be a separable, infinite-dimensional, complex Hilbert space and let A, B ∈ ℒ(H), where ℒ(H) is the algebra of all bounded linear operators on H. Let δAB : ℒ(H) → ℒ(H) denote the generalized derivation δAB(X) = AX – XB. This note will initiate a study on the class of pairs (A, B) such that .


2005 ◽  
Vol 12 (4) ◽  
pp. 717-726
Author(s):  
Salah Mecheri

Abstract Let 𝐻 be a separable infinite dimensional complex Hilbert space, and let 𝔹(𝐻) denote the algebra of all bounded linear operators on 𝐻. Let 𝐴, 𝐵 be operators in 𝔹(𝐻). We define the generalized derivation δ 𝐴, 𝐵 : 𝔹(𝐻) ↦ 𝔹(𝐻) by δ 𝐴, 𝐵(𝑋) = 𝐴𝑋 – 𝑋𝐵. In this paper we consider the question posed by Turnsek [Publ. Math. Debrecen 63: 293–304, 2003], when ? We prove that this holds in the case where 𝐴 and 𝐵 satisfy the Fuglede–Putnam theorem. Finally, we apply the obtained results to double operator integrals.



1974 ◽  
Vol 26 (1) ◽  
pp. 115-120 ◽  
Author(s):  
Carl Pearcy ◽  
Norberto Salinas

Let be a fixed separable, infinite dimensional complex Hilbert space, and let () denote the algebra of all (bounded, linear) operators on . The ideal of all compact operators on will be denoted by and the canonical quotient map from () onto the Calkin algebra ()/ will be denoted by π.Some open problems in the theory of extensions of C*-algebras (cf. [1]) have recently motivated an increasing interest in the class of all operators in () whose self-commuta tor is compact.



2015 ◽  
Vol 17 (05) ◽  
pp. 1450042
Author(s):  
Weijuan Shi ◽  
Xiaohong Cao

Let H be an infinite-dimensional separable complex Hilbert space and B(H) the algebra of all bounded linear operators on H. T ∈ B(H) satisfies Weyl's theorem if σ(T)\σw(T) = π00(T), where σ(T) and σw(T) denote the spectrum and the Weyl spectrum of T, respectively, π00(T) = {λ ∈ iso σ(T) : 0 < dim N(T - λI) < ∞}. T ∈ B(H) is said to have the stability of Weyl's theorem if T + K satisfies Weyl's theorem for all compact operator K ∈ B(H). In this paper, we characterize the operator T on H satisfying the stability of Weyl's theorem holds for T2.



2021 ◽  
Vol 54 (1) ◽  
pp. 318-325
Author(s):  
Nadia Mesbah ◽  
Hadia Messaoudene ◽  
Asma Alharbi

Abstract Let ℋ {\mathcal{ {\mathcal H} }} be a complex Hilbert space and ℬ ( ℋ ) {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }}) denotes the algebra of all bounded linear operators acting on ℋ {\mathcal{ {\mathcal H} }} . In this paper, we present some new pairs of generalized finite operators. More precisely, new pairs of operators ( A , B ) ∈ ℬ ( ℋ ) × ℬ ( ℋ ) \left(A,B)\in {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }})\times {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }}) satisfying: ∥ A X − X B − I ∥ ≥ 1 , for all X ∈ ℬ ( ℋ ) . \parallel AX-XB-I\parallel \ge 1,\hspace{1.0em}\hspace{0.1em}\text{for all}\hspace{0.1em}\hspace{0.33em}X\in {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }}). An example under which the class of such operators is not invariant under similarity orbit is given. Range kernel orthogonality of generalized derivation is also studied.



2013 ◽  
Vol 59 (1) ◽  
pp. 163-172
Author(s):  
Salah Mecheri

Abstract Let H be a separable infinite dimensional complex Hilbert space, and let B(H) denote the algebra of all bounded linear operators on H. Let A;B be operators in B(H). In this paper we prove that if A is quasi-class A and B* is invertible quasi-class A and AX = XB, for some X ∈ C2 (the class of Hilbert-Schmidt operators on H), then A*X = XB*. We also prove that if A is a quasi-class A operator and f is an analytic function on a neighborhood of the spectrum of A, then f(A) satisfies generalized Weyl's theorem. Other related results are also given.



1985 ◽  
Vol 26 (2) ◽  
pp. 141-143 ◽  
Author(s):  
Fuad Kittaneh

Let H be a separable, infinite dimensional complex Hilbert space, and let B(H) denote the algebra of all bounded linear operators on H. Let K(H) denote the ideal of compact operators on H. For any compact operator A let |A|=(A*A)1,2 and S1(A), s2(A),… be the eigenvalues of |A| in decreasing order and repeatedaccording to multiplicity. If, for some 1<p<∞, si(A)p <∞, we say that A is in the Schatten p-class Cp and ∥A∥p=1/p is the p-norm of A. Hence, C1 is the trace class, C2 is the Hilbert–Schmidt class, and C∞ is the ideal of compact operators K(H).



1977 ◽  
Vol 29 (5) ◽  
pp. 1112-1119 ◽  
Author(s):  
Arlen Brown ◽  
Carl Pearcy

Let be a separable, infinite dimensional, complex Hilbert space, and let denote the algebra of all bounded linear operators on . In what follows we shall denote the spectrum, essential spectrum, and left essential spectrum of an operator T in , respectively. Furthermore, if and T1 is unitarily equivalent to a compact perturbation of an operator T2, then we write T1~ T2, and if the compact perturbation can be chosen to have norm less than e, we write T1 ~ T2(ϵ).



2018 ◽  
Vol 68 (1) ◽  
pp. 163-170 ◽  
Author(s):  
Fangfang Zhao ◽  
Changjing Li

AbstractLetB(H) be the algebra of all bounded linear operators on a complex Hilbert spaceHand 𝓐 ⊆B(H) be a von Neumann algebra with no central summands of typeI1. ForA,B∈ 𝓐, define byA∙B=AB+BA∗a new product ofAandB. In this article, it is proved that a map Φ: 𝓐 →B(H) satisfies Φ(A∙B∙C) = Φ(A) ∙B∙C+A∙ Φ(B) ∙C+A∙B∙Φ(C) for allA,B,C∈ 𝓐 if and only if Φ is an additive *-derivation.



2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Chaoqun Chen ◽  
Fangyan Lu ◽  
Cuimei Cui ◽  
Ling Wang

Let H be a complex Hilbert space. Denote by B H the algebra of all bounded linear operators on H . In this paper, we investigate the non-self-adjoint subalgebras of B H of the form T + B , where B is a block-closed bimodule over a masa and T is a subalgebra of the masa. We establish a sufficient and necessary condition such that the subalgebras of the form T + B has the double commutant property in some particular cases.



Sign in / Sign up

Export Citation Format

Share Document