The Failure of Approximate Inner Conjugacy for Standard Diagonals in Regular Limit Algebras

1996 ◽  
Vol 39 (4) ◽  
pp. 420-428 ◽  
Author(s):  
Allan P. Donsig ◽  
S. C. Power

AbstractAF C*-algebras contain natural AF masas which, here, we call standard diagonals. Standard diagonals are unique, in the sense that two standard diagonals in an AF C*-algebra are conjugate by an approximately inner automorphism. We show that this uniqueness fails for non-selfadjoint AF operator algebras. Precisely, we construct two standard diagonals in a particular non-selfadjoint AF operator algebra which are not conjugate by an approximately inner automorphism of the non-selfadjoint algebra.

2019 ◽  
Vol 72 (4) ◽  
pp. 988-1023
Author(s):  
Clayton Suguio Hida ◽  
Piotr Koszmider

AbstractA subset ${\mathcal{X}}$ of a C*-algebra ${\mathcal{A}}$ is called irredundant if no $A\in {\mathcal{X}}$ belongs to the C*-subalgebra of ${\mathcal{A}}$ generated by ${\mathcal{X}}\setminus \{A\}$. Separable C*-algebras cannot have uncountable irredundant sets and all members of many classes of nonseparable C*-algebras, e.g., infinite dimensional von Neumann algebras have irredundant sets of cardinality continuum.There exists a considerable literature showing that the question whether every AF commutative nonseparable C*-algebra has an uncountable irredundant set is sensitive to additional set-theoretic axioms, and we investigate here the noncommutative case.Assuming $\diamondsuit$ (an additional axiom stronger than the continuum hypothesis), we prove that there is an AF C*-subalgebra of ${\mathcal{B}}(\ell _{2})$ of density $2^{\unicode[STIX]{x1D714}}=\unicode[STIX]{x1D714}_{1}$ with no nonseparable commutative C*-subalgebra and with no uncountable irredundant set. On the other hand we also prove that it is consistent that every discrete collection of operators in ${\mathcal{B}}(\ell _{2})$ of cardinality continuum contains an irredundant subcollection of cardinality continuum.Other partial results and more open problems are presented.


Author(s):  
Isaac Goldbring ◽  
Bradd Hart

Abstract We show that the following operator algebras have hyperarithmetic theory: the hyperfinite II$_1$ factor $\mathcal R$, $L(\varGamma )$ for $\varGamma $ a finitely generated group with solvable word problem, $C^*(\varGamma )$ for $\varGamma $ a finitely presented group, $C^*_\lambda (\varGamma )$ for $\varGamma $ a finitely generated group with solvable word problem, $C(2^\omega )$ and $C(\mathbb P)$ (where $\mathbb P$ is the pseudoarc). We also show that the Cuntz algebra $\mathcal O_2$ has a hyperarithmetic theory provided that the Kirchberg embedding problems have affirmative answers. Finally, we prove that if there is an existentially closed (e.c.) II$_1$ factor (resp. $\textrm{C}^*$-algebra) that does not have hyperarithmetic theory, then there are continuum many theories of e.c. II$_1$ factors (resp. e.c. $\textrm{C}^*$-algebras).


2002 ◽  
Vol 14 (07n08) ◽  
pp. 649-673 ◽  
Author(s):  
AKITAKA KISHIMOTO

We present two types of result for approximately inner one-parameter automorphism groups (referred to as AI flows hereafter) of separable C*-algebras. First, if there is an irreducible representation π of a separable C*-algebra A such that π(A) does not contain non-zero compact operators, then there is an AI flow α such that π is α-covariant and α is far from uniformly continuous in the sense that α induces a flow on π(A) which has full Connes spectrum. Second, if α is an AI flow on a separable C*-algebra A and π is an α-covariant irreducible representation, then we can choose a sequence (hn) of self-adjoint elements in A such that αt is the limit of inner flows Ad eithn and the sequence π(eithn) of one-parameter unitary groups (referred to as unitary flows hereafter) converges to a unitary flow which implements α in π. This latter result will be extended to cover the case of weakly inner type I representations. In passing we shall also show that if two representations of a separable simple C*-algebra on a separable Hilbert space generate the same von Neumann algebra of type I, then there is an approximately inner automorphism which sends one into the other up to equivalence.


1993 ◽  
Vol 04 (02) ◽  
pp. 289-317 ◽  
Author(s):  
LARRY B. SCHWEITZER

We define the notion of strong spectral invariance for a dense Fréchet subalgebra A of a Banach algebra B. We show that if A is strongly spectral invariant in a C*-algebra B, and G is a compactly generated polynomial growth Type R Lie group, not necessarily connected, then the smooth crossed product G ⋊ A is spectral invariant in the C*-crossed product G ⋊ B. Examples of such groups are given by finitely generated polynomial growth discrete groups, compact or connected nilpotent Lie groups, the group of Euclidean motions on the plane, the Mautner group, or any closed subgroup of one of these. Our theorem gives the spectral invariance of G ⋊ A if A is the set of C∞-vectors for the action of G on B, or if B = C0 (M), and A is a set of G-differentiable Schwartz functions [Formula: see text] on M. This gives many examples of spectral invariant dense subalgebras for the C*-algebras associated with dynamical systems. We also obtain relevant results about exact sequences, subalgebras, tensoring by smooth compact operators, and strong spectral invariance in L1 (G, B).


2002 ◽  
Vol 45 (2) ◽  
pp. 349-352 ◽  
Author(s):  
Lajos Molnár

AbstractAs a consequence of the main result of the paper we obtain that every 2-local isometry of the $C^*$-algebra $B(H)$ of all bounded linear operators on a separable infinite-dimensional Hilbert space $H$ is an isometry. We have a similar statement concerning the isometries of any extension of the algebra of all compact operators by a separable commutative $C^*$-algebra. Therefore, on those $C^*$-algebras the isometries are completely determined by their local actions on the two-point subsets of the underlying algebras.AMS 2000 Mathematics subject classification: Primary 47B49


1986 ◽  
Vol 29 (1) ◽  
pp. 97-100 ◽  
Author(s):  
R. J. Archbold ◽  
Alexander Kumjian

A C*-algebra A is said to be approximately finite dimensional (AF) if it is the inductive limit of a sequence of finite dimensional C*-algebras(see [2], [5]). It is said to be nuclear if, for each C*-algebra B, there is a unique C*-norm on the *-algebraic tensor product A ⊗B [11]. Since finite dimensional C*-algebras are nuclear, and inductive limits of nuclear C*-algebras are nuclear [16];,every AF C*-algebra is nuclear. The family of nuclear C*-algebras is a large and well-behaved class (see [12]). The AF C*-algebras for a particularly tractable sub-class which has been completely classified in terms of the invariant K0 [7], [5].


2011 ◽  
Vol 54 (3) ◽  
pp. 411-421 ◽  
Author(s):  
Kenneth R. Davidson ◽  
Alex Wright

AbstractWe show that every free semigroup algebra has a (strongly) unique Banach space predual. We also provide a new simpler proof that a weak-∗ closed unital operator algebra containing a weak-∗ dense subalgebra of compact operators has a unique Banach space predual.


1997 ◽  
Vol 08 (03) ◽  
pp. 357-374 ◽  
Author(s):  
Kengo Matsumoto

We construct and study C*-algebras associated with subshifts in symbolic dynamics as a generalization of Cuntz–Krieger algebras for topological Markov shifts. We prove some universal properties for the C*-algebras and give a criterion for them to be simple and purely infinite. We also present an example of a C*-algebra coming from a subshift which is not conjugate to a Markov shift.


2008 ◽  
Vol 19 (01) ◽  
pp. 47-70 ◽  
Author(s):  
TOKE MEIER CARLSEN

By using C*-correspondences and Cuntz–Pimsner algebras, we associate to every subshift (also called a shift space) 𝖷 a C*-algebra [Formula: see text], which is a generalization of the Cuntz–Krieger algebras. We show that [Formula: see text] is the universal C*-algebra generated by partial isometries satisfying relations given by 𝖷. We also show that [Formula: see text] is a one-sided conjugacy invariant of 𝖷.


2017 ◽  
Vol 69 (3) ◽  
pp. 548-578 ◽  
Author(s):  
Michael Hartglass

AbstractWe study a canonical C* -algebra, 𝒮(Г,μ), that arises from a weighted graph (Г,μ), speci fic cases of which were previously studied in the context of planar algebras. We discuss necessary and sufficient conditions of the weighting that ensure simplicity and uniqueness of trace of 𝒮(Г,μ), and study the structure of its positive cone. We then study the *-algebra,𝒜, generated by the generators of 𝒮(Г,μ), and use a free differential calculus and techniques of Charlesworth and Shlyakhtenko as well as Mai, Speicher, and Weber to show that certain “loop” elements have no atoms in their spectral measure. After modifying techniques of Shlyakhtenko and Skoufranis to show that self adjoint elements x ∊ Mn(𝒜) have algebraic Cauchy transform, we explore some applications to eigenvalues of polynomials inWishart matrices and to diagrammatic elements in von Neumann algebras initially considered by Guionnet, Jones, and Shlyakhtenko.


Sign in / Sign up

Export Citation Format

Share Document