Subspace Similarity of Local Feature Set using Canonical Correlation Analysis for View-based Object Recognition

2012 ◽  
Vol 1 (1) ◽  
pp. 12-20
Author(s):  
XianHua Han ◽  
YenWei Chen
2018 ◽  
Vol 15 (1) ◽  
pp. 172988141775282 ◽  
Author(s):  
Shiying Sun ◽  
Ning An ◽  
Xiaoguang Zhao ◽  
Min Tan

Object recognition is one of the essential issues in computer vision and robotics. Recently, deep learning methods have achieved excellent performance in red-green-blue (RGB) object recognition. However, the introduction of depth information presents a new challenge: How can we exploit this RGB-D data to characterize an object more adequately? In this article, we propose a principal component analysis–canonical correlation analysis network for RGB-D object recognition. In this new method, two stages of cascaded filter layers are constructed and followed by binary hashing and block histograms. In the first layer, the network separately learns principal component analysis filters for RGB and depth. Then, in the second layer, canonical correlation analysis filters are learned jointly using the two modalities. In this way, the different characteristics of the RGB and depth modalities are considered by our network as well as the characteristics of the correlation between the two modalities. Experimental results on the most widely used RGB-D object data set show that the proposed method achieves an accuracy which is comparable to state-of-the-art methods. Moreover, our method has a simpler structure and is efficient even without graphics processing unit acceleration.


1985 ◽  
Vol 24 (02) ◽  
pp. 91-100 ◽  
Author(s):  
W. van Pelt ◽  
Ph. H. Quanjer ◽  
M. E. Wise ◽  
E. van der Burg ◽  
R. van der Lende

SummaryAs part of a population study on chronic lung disease in the Netherlands, an investigation is made of the relationship of both age and sex with indices describing the maximum expiratory flow-volume (MEFV) curve. To determine the relationship, non-linear canonical correlation was used as realized in the computer program CANALS, a combination of ordinary canonical correlation analysis (CCA) and non-linear transformations of the variables. This method enhances the generality of the relationship to be found and has the advantage of showing the relative importance of categories or ranges within a variable with respect to that relationship. The above is exemplified by describing the relationship of age and sex with variables concerning respiratory symptoms and smoking habits. The analysis of age and sex with MEFV curve indices shows that non-linear canonical correlation analysis is an efficient tool in analysing size and shape of the MEFV curve and can be used to derive parameters concerning the whole curve.


Sign in / Sign up

Export Citation Format

Share Document