A Hybrid Approach for the Multi-class Gene Selection Problem

2011 ◽  
Vol 6 (5) ◽  
pp. 1-17
Author(s):  
Zhixia Yang ◽  
Yanmei Zhao
2018 ◽  
Vol 14 (6) ◽  
pp. 868-880 ◽  
Author(s):  
Shilan S. Hameed ◽  
Fahmi F. Muhammad ◽  
Rohayanti Hassan ◽  
Faisal Saeed

2018 ◽  
Vol 6 (9) ◽  
pp. 270-275
Author(s):  
Mohammed El Alaoui ◽  
Karim El Moutaouakil ◽  
Mohamed Ettaouil

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Shuangbao Song ◽  
Xingqian Chen ◽  
Zheng Tang ◽  
Yuki Todo

Microarray gene expression data provide a prospective way to diagnose disease and classify cancer. However, in bioinformatics, the gene selection problem, i.e., how to select the most informative genes from thousands of genes, remains challenging. This problem is a specific feature selection problem with high-dimensional features and small sample sizes. In this paper, a two-stage method combining a filter feature selection method and a wrapper feature selection method is proposed to solve the gene selection problem. In contrast to common methods, the proposed method models the gene selection problem as a multiobjective optimization problem. Both stages employ the same multiobjective differential evolution (MODE) as the search strategy but incorporate different objective functions. The three objective functions of the filter method are mainly based on mutual information. The two objective functions of the wrapper method are the number of selected features and the classification error of a naive Bayes (NB) classifier. Finally, the performance of the proposed method is tested and analyzed on six benchmark gene expression datasets. The experimental results verified that this paper provides a novel and effective way to solve the gene selection problem by applying a multiobjective optimization algorithm.


2019 ◽  
Vol 53 (1) ◽  
pp. 269-288 ◽  
Author(s):  
Ahmed Bir-Jmel ◽  
Sidi Mohamed Douiri ◽  
Souad Elbernoussi

Gene expression data (DNA microarray) enable researchers to simultaneously measure the levels of expression of several thousand genes. These levels of expression are very important in the classification of different types of tumors. In this work, we are interested in gene selection, which is an essential step in the data pre-processing for cancer classification. This selection makes it possible to represent a small subset of genes from a large set, and to eliminate the redundant, irrelevant or noisy genes. The combinatorial nature of the selection problem requires the development of specific techniques such as filters and Wrappers, or hybrids combining several optimization processes. In this context, we propose two hybrid approaches (RBPSO-1NN and FBPSO-SVM) for the gene selection problem, based on the combination of the filter methods (the Fisher criterion and the ReliefF algorithm), the BPSO metaheuristic algorithms and the Backward algorithm using the classifiers (SVM and 1NN) for the evaluation of the relevance of the candidate subsets. In order to verify the performance of our methods, we have tested them on eight well-known microarray datasets of high dimensions varying from 2308 to 11225 genes. The experiments carried out on the different datasets show that our methods prove to be very competitive with the existing works.


Sign in / Sign up

Export Citation Format

Share Document