view selection
Recently Published Documents


TOTAL DOCUMENTS

276
(FIVE YEARS 48)

H-INDEX

25
(FIVE YEARS 2)

Author(s):  
Xinxin Zhang ◽  
Yuefeng Xi ◽  
Zhentao Huang ◽  
Lintao Zheng ◽  
Hui Huang ◽  
...  

2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

The COVID 19 Pandemic, has resulted in large scale of generation of Big data. This Big data is heterogeneous and includes the data of people infected with corona virus, the people who were in contact of infected person, demographics of infected person, data on corona testing, huge amount of GPS data of people location, and large number of unstructured data about prevention and treatment of COVID 19. Thus, the pandemic has resulted in producing several Zeta bytes of structured, semi-structured and unstructured data. The challenge is to process this Big data, which has the characteristics of very large volume, brisk rate of generation and modification and large data redundancy, in a time bound manner to take timely predictions and decisions. Materialization of views for Big data is one of the ways to enhance the efficiency of processing of the data. In this paper, Big data view selection problem is addressed, as a bi-objective optimization problem, using Multi-objective genetic algorithm.


2021 ◽  
Author(s):  
Noah Stier ◽  
Alexander Rich ◽  
Pradeep Sen ◽  
Tobias Hollerer

Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1561
Author(s):  
Sheng Zeng ◽  
Guohua Geng ◽  
Mingquan Zhou

Automatically selecting a set of representative views of a 3D virtual cultural relic is crucial for constructing wisdom museums. There is no consensus regarding the definition of a good view in computer graphics; the same is true of multiple views. View-based methods play an important role in the field of 3D shape retrieval and classification. However, it is still difficult to select views that not only conform to subjective human preferences but also have a good feature description. In this study, we define two novel measures based on information entropy, named depth variation entropy and depth distribution entropy. These measures were used to determine the amount of information about the depth swings and different depth quantities of each view. Firstly, a canonical pose 3D cultural relic was generated using principal component analysis. A set of depth maps obtained by orthographic cameras was then captured on the dense vertices of a geodesic unit-sphere by subdividing the regular unit-octahedron. Afterwards, the two measures were calculated separately on the depth maps gained from the vertices and the results on each one-eighth sphere form a group. The views with maximum entropy of depth variation and depth distribution were selected, and further scattered viewpoints were selected. Finally, the threshold word histogram derived from the vector quantization of salient local descriptors on the selected depth maps represented the 3D cultural relic. The viewpoints obtained by the proposed method coincided with an arbitrary pose of the 3D model. The latter eliminated the steps of manually adjusting the model’s pose and provided acceptable display views for people. In addition, it was verified on several datasets that the proposed method, which uses the Bag-of-Words mechanism and a deep convolution neural network, also has good performance regarding retrieval and classification when dealing with only four views.


2021 ◽  
Vol 13 (19) ◽  
pp. 3995
Author(s):  
Zhen Fan ◽  
Xiu Li ◽  
Yipeng Li

Most multi-view based human pose estimation techniques assume the cameras are fixed. While in dynamic scenes, the cameras should be able to move and seek the best views to avoid occlusions and extract 3D information of the target collaboratively. In this paper, we address the problem of online view selection for a fixed number of cameras to estimate multi-person 3D poses actively. The proposed method exploits a distributed multi-agent based deep reinforcement learning framework, where each camera is modeled as an agent, to optimize the action of all the cameras. An inter-agent communication protocol was developed to transfer the cameras’ relative positions between agents for better collaboration. Experiments on the Panoptic dataset show that our method outperforms other view selection methods by a large margin given an identical number of cameras. To the best of our knowledge, our method is the first to address online active multi-view 3D pose estimation with multi-agent reinforcement learning.


2021 ◽  
Vol 14 (13) ◽  
pp. 3281-3294
Author(s):  
Theofilos Mailis ◽  
Yannis Kotidis ◽  
Stamatis Christoforidis ◽  
Evgeny Kharlamov ◽  
Yannis Ioannidis

Knowledge Graphs (KGs) are collections of interconnected and annotated entities that have become powerful assets for data integration, search enhancement, and other industrial applications. Knowledge Graphs such as DBPEDIA may contain billion of triple relations and are intensively queried with millions of queries per day. A prominent approach to enhance query answering on Knowledge Graph databases is View Materialization, ie., the materialization of an appropriate set of computations that will improve query performance. We study the problem of view materialization and propose a view selection methodology for processing query workloads with more than a million queries. Our approach heavily relies on subgraph pattern mining techniques that allow to create efficient summarizations of massive query workloads while also identifying the candidate views for materialization. In the core of our work is the correspondence between the view selection problem to that of Maximizing a Nondecreasing Submodular Set Function Subject to a Knapsack Constraint . The latter leads to a tractable view-selection process for native triple stores that allows a (1 - e ---1 )-approximation of the optimal selection of views. Our experimental evaluation shows that all the steps of the view-selection process are completed in a few minutes, while the corresponding rewritings accelerate 67.68% of the queries in the DBPEDIA query workload. Those queries are executed in 2.19% of their initial time on average.


Author(s):  
Chao Zhang ◽  
Jiaheng Lu ◽  
Qingsong Guo ◽  
Xinyong Zhang ◽  
Xiaochun Han ◽  
...  

2021 ◽  
Vol 12 (2) ◽  
pp. 17-37
Author(s):  
Akshay Kumar ◽  
T. V. Vijay Kumar

Big data comprises voluminous and heterogeneous data that has a limited level of trustworthiness. This data is used to generate valuable information that can be used for decision making. However, decision making queries on Big data consume a lot of time for processing resulting in higher response times. For effective and efficient decision making, this response time needs to be reduced. View materialization has been used successfully to reduce the query response time in the context of a data warehouse. Selection of such views is a complex problem vis-à-vis Big data and is the focus of this paper. In this paper, the Big data view selection problem is formulated as a bi-objective optimization problem with the two objectives being the minimization of the query evaluation cost and the minimization of the update processing cost. Accordingly, a Big data view selection algorithm that selects Big data views for a given query workload, using the vector evaluated genetic algorithm, is proposed. The proposed algorithm aims to generate views that are able to reduce the response time of decision-making queries.


Sign in / Sign up

Export Citation Format

Share Document