Late-Night Salivary Cortisol for the Diagnosis of Cushing Syndrome: A Meta-Analysis

2009 ◽  
Vol 15 (4) ◽  
pp. 335-342 ◽  
Author(s):  
Ty Carroll ◽  
Hershel Raff ◽  
James Findling
Author(s):  
Sabrina Coelli ◽  
Camila Bergonsi Farias ◽  
Ariana Aguiar Soares ◽  
Gabriele Martins Crescente ◽  
Vânia Naomi Hirakata ◽  
...  

AbstractBackground:Late-night salivary cortisol (LNSC) is one of the most reliable tests to screen for endogenous Cushing syndrome. This test is simple, inexpensive and noninvasive and has high sensitivity and specificity. The aim of our study was to analyze the putative influence of age, gender and body mass index (BMI) on LNSC levels in a healthy population.Methods:Cross-sectional study conducted in healthy adults. Midnight saliva samples were collected at home. Participants refrained from teeth brushing, eating or drinking for 2 h prior to collection. Salivary cortisol measured by electrochemiluminescence immunoassay (ECLIA). The study was approved by the Ethics Committee of the hospital (number 140073).Results:We evaluated 122 nonsmoking healthy volunteers. Mean age was 35±14 years (range, 18–74 years); 63% were women. Mean BMI was 24±3 kg/mConclusions:The maximum reference value (P97.5) of LNSC was set at 8.3 nmol/L (0.3 μg/dL) using ECLIA. Advanced age was associated with higher LNSC levels, with no evident influence of gender or BMI.


2019 ◽  
Vol 3 (8) ◽  
pp. 1631-1640 ◽  
Author(s):  
Hershel Raff ◽  
Jonathan M Phillips

AbstractThe measurement of late-night salivary cortisol is a mainstay in the diagnosis of Cushing syndrome. Furthermore, the measurement of salivary cortisol is useful in assessing the cortisol awakening response. Because the salivary glands express 11-β-hydroxysteroid dehydrogenase, the measurement of salivary cortisone may improve the performance of salivary corticosteroid measurements. We measured salivary cortisol by enzyme immunoassay (EIA) and salivary cortisol and cortisone by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in only 50 µL of saliva sampled from 54 healthy subjects (aged 20 to 64 years). We allowed patients to sample at their normal bedtime (2025 to 2400 hours) to answer a common question as to whether sampling at the normal bedtime is equivalent to the standard required sampling at 2300 to 2400 hours. We found that the salivary cortisol and cortisone results by LC-MS/MS correlated well with salivary cortisol measured with the US Food and Drug Administration-cleared EIA. Furthermore, the upper limit of normal of salivary cortisol by EIA for bedtime samples was lower than the previously published upper limit of normal with sampling required at 2300 to 2400 hours. There were no significant effects of age or sex on any of the salivary steroid measurements. We conclude that (i) salivary cortisol and cortisone can be reliably measured by LC-MS/MS in small volumes of saliva and (ii) that patients can be evaluated using saliva sampled at their normal bedtime, rather than being required to stay awake until 2300 to 2400 hours.


2020 ◽  
Vol 4 (10) ◽  
Author(s):  
Joshua Kannankeril ◽  
Ty Carroll ◽  
James W Findling ◽  
Bradley Javorsky ◽  
Ian L Gunsolus ◽  
...  

Abstract Context Late-night salivary cortisol (LNSC) measured by enzyme immunoassay (EIA-F) is a first-line screening test for Cushing syndrome (CS) with a reported sensitivity and specificity of >90%. However, liquid chromatography-tandem mass spectrometry, validated to measure salivary cortisol (LCMS-F) and cortisone (LCMS-E), has been proposed to be superior diagnostically. Objective, Setting, and Main Outcome Measures Prospectively evaluate the diagnostic performance of EIA-F, LCMS-F, and LCMS-E in 1453 consecutive late-night saliva samples from 705 patients with suspected CS. Design Patients grouped by the presence or absence of at least one elevated salivary steroid result and then subdivided by diagnosis. Results We identified 283 patients with at least one elevated salivary result; 45 had an established diagnosis of neoplastic hypercortisolism (CS) for which EIA-F had a very high sensitivity (97.5%). LCMS-F and LCMS-E had lower sensitivity but higher specificity than EIA-F. EIA-F had poor sensitivity (31.3%) for adrenocorticotropic hormone (ACTH)-independent CS (5 patients with at least 1 and 11 without any elevated salivary result). In patients with Cushing disease (CD), most nonelevated LCMS-F results were in patients with persistent/recurrent CD; their EIA-F levels were lower than in patients with newly diagnosed CD. Conclusions Since the majority of patients with ≥1 elevated late-night salivary cortisol or cortisone result did not have CS, a single elevated level has poor specificity and positive predictive value. LNSC measured by EIA is a sensitive test for ACTH-dependent Cushing syndrome but not for ACTH-independent CS. We suggest that neither LCMS-F nor LCMS-E improves the sensitivity of late-night EIA-F for CS.


2015 ◽  
Vol 38 (2) ◽  
pp. E4 ◽  
Author(s):  
Vivek Bansal ◽  
Nadine El Asmar ◽  
Warren R. Selman ◽  
Baha M. Arafah

Despite many recent advances, the management of patients with Cushing's disease continues to be challenging. Cushing's syndrome is a complex metabolic disorder that is a result of excess glucocorticoids. Excluding the exogenous causes, adrenocorticotropic hormone–secreting pituitary adenomas account for nearly 70% of all cases of Cushing's syndrome. The suspicion, diagnosis, and differential diagnosis require a logical systematic approach with attention paid to key details at each investigational step. A diagnosis of endogenous Cushing's syndrome is usually suspected in patients with clinical symptoms and confirmed by using multiple biochemical tests. Each of the biochemical tests used to establish the diagnosis has limitations that need to be considered for proper interpretation. Although some tests determine the total daily urinary excretion of cortisol, many others rely on measurements of serum cortisol at baseline and after stimulation (e.g., after corticotropin-releasing hormone) or suppression (e.g., dexamethasone) with agents that influence the hypothalamic-pituitary-adrenal axis. Other tests (e.g., measurements of late-night salivary cortisol concentration) rely on alterations in the diurnal rhythm of cortisol secretion. Because more than 90% of the cortisol in the circulation is protein bound, any alteration in the binding proteins (transcortin and albumin) will automatically influence the measured level and confound the interpretation of stimulation and suppression data, which are the basis for establishing the diagnosis of Cushing's syndrome. Although measuring late-night salivary cortisol seems to be an excellent initial test for hypercortisolism, it may be confounded by poor sampling methods and contamination. Measurements of 24-hour urinary free-cortisol excretion could be misleading in the presence of some pathological and physiological conditions. Dexamethasone suppression tests can be affected by illnesses that alter the absorption of the drug (e.g., malabsorption, celiac disease) and by the concurrent use of medications that interfere with its metabolism (e.g., inducers and inhibitors of the P450 enzyme system). In this review, the authors aim to review the pitfalls commonly encountered in the workup of patients suspected to have hypercortisolism. The optimal diagnosis and therapy for patients with Cushing's disease require the thorough and close coordination and involvement of all members of the management team.


Sign in / Sign up

Export Citation Format

Share Document