scholarly journals Self-Regulating Model for Control of Replication Origin Firing in Budding Yeast

Cell Cycle ◽  
2003 ◽  
Vol 2 (6) ◽  
pp. 575-577 ◽  
Author(s):  
Laura A. Díaz-Martínez ◽  
Duncan J. Clarke
2002 ◽  
Vol 10 (5) ◽  
pp. 1223-1233 ◽  
Author(s):  
Maria Vogelauer ◽  
Liudmilla Rubbi ◽  
Isabelle Lucas ◽  
Bonita J Brewer ◽  
Michael Grunstein

2021 ◽  
Author(s):  
Ann-Kathrin Schmidt ◽  
Nicolas Böhly ◽  
Xiaoxiao Zhang ◽  
Benjamin O. Slusarenko ◽  
Magdalena Hennecke ◽  
...  

1998 ◽  
Vol 18 (12) ◽  
pp. 7294-7303 ◽  
Author(s):  
Soo-Mi Kim ◽  
Joel A. Huberman

ABSTRACT Previous investigations have shown that the fission yeast,Schizosaccharomyces pombe, has DNA replication origins (500 to 1500 bp) that are larger than those in the budding yeast,Saccharomyces cerevisiae (100 to 150 bp). Deletion and linker substitution analyses of two fission yeast origins revealed that they contain multiple important regions with AT-rich asymmetric (abundant A residues in one strand and T residues in the complementary strand) sequence motifs. In this work we present the characterization of a third fission yeast replication origin, ars3001, which is relatively small (∼570 bp) and responsible for replication of ribosomal DNA. Like previously studied fission yeast origins,ars3001 contains multiple important regions. The three most important of these regions resemble each other in several ways: each region is essential for origin function and is at least partially orientation dependent, each region contains similar clusters of A+T-rich asymmetric sequences, and the regions can partially substitute for each other. These observations suggest that ars3001function requires synergistic interactions between domains binding similar proteins. It is likely that this requirement extends to other fission yeast origins, explaining why such origins are larger than those of budding yeast.


1999 ◽  
Vol 19 (9) ◽  
pp. 6098-6109 ◽  
Author(s):  
Marija Vujcic ◽  
Charles A. Miller ◽  
David Kowalski

ABSTRACT In the budding yeast, Saccharomyces cerevisiae, replicators can function outside the chromosome as autonomously replicating sequence (ARS) elements; however, within chromosome III, certain ARSs near the transcriptionally silent HML locus show no replication origin activity. Two of these ARSs comprise the transcriptional silencers E (ARS301) and I (ARS302). Another, ARS303, resides betweenHML and the CHA1 gene, and its function is not known. Here we further localized and characterized ARS303and in the process discovered a new ARS, ARS320. BothARS303 and ARS320 are competent as chromosomal replication origins since origin activity was seen when they were inserted at a different position in chromosome III. However, at their native locations, where the two ARSs are in a cluster withARS302, the I silencer, no replication origin activity was detected regardless of yeast mating type, special growth conditions that induce the transcriptionally repressed CHA1 gene,trans-acting mutations that abrogate transcriptional silencing at HML (sir3, orc5), orcis-acting mutations that delete the E and I silencers containing ARS elements. These results suggest that, for theHML ARS cluster (ARS303, ARS320, and ARS302), inactivity of origins is independent of local transcriptional silencing, even though origins and silencers share keycis- and trans-acting components. Surprisingly, deletion of active replication origins located 25 kb (ORI305) and 59 kb (ORI306) away led to detection of replication origin function at theHML ARS cluster, as well as at ARS301, the E silencer. Thus, replication origin silencing at HML ARSs is mediated by active replication origins residing at long distances fromHML in the chromosome. The distal active origins are known to fire early in S phase, and we propose that their inactivation delays replication fork arrival at HML, providing additional time for HML ARSs to fire as origins.


Sign in / Sign up

Export Citation Format

Share Document