ars elements
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 0)

H-INDEX

17
(FIVE YEARS 0)

2012 ◽  
Vol 163 (4) ◽  
pp. 243-253 ◽  
Author(s):  
Manoj K. Dhar ◽  
Shelly Sehgal ◽  
Sanjana Kaul


2008 ◽  
Vol 28 (16) ◽  
pp. 5071-5081 ◽  
Author(s):  
FuJung Chang ◽  
James F. Theis ◽  
Jeremy Miller ◽  
Conrad A. Nieduszynski ◽  
Carol S. Newlon ◽  
...  

ABSTRACT Saccharomyces cerevisiae chromosome III encodes 11 autonomously replicating sequence (ARS) elements that function as chromosomal replicators. The essential 11-bp ARS consensus sequence (ACS) that binds the origin recognition complex (ORC) has been experimentally defined for most of these replicators but not for ARS318 (HMR-I), which is one of the HMR silencers. In this study, we performed a comprehensive linker scan analysis of ARS318. Unexpectedly, this replicator depends on a 9/11-bp match to the ACS that positions the ORC binding site only 6 bp away from an Abf1p binding site. Although a largely inactive replicator on the chromosome, ARS318 becomes active if the nearby HMR-E silencer is deleted. We also performed a multiple sequence alignment of confirmed replicators on chromosomes III, VI, and VII. This analysis revealed a highly conserved WTW motif 17 to 19 bp from the ACS that is functionally important and is apparent in the 228 phylogenetically conserved ARS elements among the six sensu stricto Saccharomyces species.



2006 ◽  
Vol 52 (3) ◽  
pp. 178-181 ◽  
Author(s):  
R. Ortiz-Alvarado ◽  
G. A. Gonzalez-Hernandez ◽  
J. C. Torres-Guzman ◽  
J. F. Gutierrez-Corona


2001 ◽  
Vol 12 (11) ◽  
pp. 3317-3327 ◽  
Author(s):  
Arkadi Poloumienko ◽  
Ann Dershowitz ◽  
Jitakshi De ◽  
Carol S. Newlon

In Saccharomyces cerevisiae chromosomal DNA replication initiates at intervals of ∼40 kb and depends upon the activity of autonomously replicating sequence (ARS) elements. The identification of ARS elements and analysis of their function as chromosomal replication origins requires the use of functional assays because they are not sufficiently similar to identify by DNA sequence analysis. To complete the systematic identification of ARS elements onS. cerevisiae chromosome III, overlapping clones covering 140 kb of the right arm were tested for their ability to promote extrachromosomal maintenance of plasmids. Examination of chromosomal replication intermediates of each of the seven ARS elements identified revealed that their efficiencies of use as chromosomal replication origins varied widely, with four ARS elements active in ≤10% of cells in the population and two ARS elements active in ≥90% of the population. Together with our previous analysis of a 200-kb region of chromosome III, these data provide the first complete analysis of ARS elements and DNA replication origins on an entire eukaryotic chromosome.



1999 ◽  
Vol 19 (9) ◽  
pp. 6098-6109 ◽  
Author(s):  
Marija Vujcic ◽  
Charles A. Miller ◽  
David Kowalski

ABSTRACT In the budding yeast, Saccharomyces cerevisiae, replicators can function outside the chromosome as autonomously replicating sequence (ARS) elements; however, within chromosome III, certain ARSs near the transcriptionally silent HML locus show no replication origin activity. Two of these ARSs comprise the transcriptional silencers E (ARS301) and I (ARS302). Another, ARS303, resides betweenHML and the CHA1 gene, and its function is not known. Here we further localized and characterized ARS303and in the process discovered a new ARS, ARS320. BothARS303 and ARS320 are competent as chromosomal replication origins since origin activity was seen when they were inserted at a different position in chromosome III. However, at their native locations, where the two ARSs are in a cluster withARS302, the I silencer, no replication origin activity was detected regardless of yeast mating type, special growth conditions that induce the transcriptionally repressed CHA1 gene,trans-acting mutations that abrogate transcriptional silencing at HML (sir3, orc5), orcis-acting mutations that delete the E and I silencers containing ARS elements. These results suggest that, for theHML ARS cluster (ARS303, ARS320, and ARS302), inactivity of origins is independent of local transcriptional silencing, even though origins and silencers share keycis- and trans-acting components. Surprisingly, deletion of active replication origins located 25 kb (ORI305) and 59 kb (ORI306) away led to detection of replication origin function at theHML ARS cluster, as well as at ARS301, the E silencer. Thus, replication origin silencing at HML ARSs is mediated by active replication origins residing at long distances fromHML in the chromosome. The distal active origins are known to fire early in S phase, and we propose that their inactivation delays replication fork arrival at HML, providing additional time for HML ARSs to fire as origins.



Genetics ◽  
1999 ◽  
Vol 152 (3) ◽  
pp. 943-952
Author(s):  
James F Theis ◽  
Chen Yang ◽  
Christopher B Schaefer ◽  
Carol S Newlon

Abstract ARS elements of Saccharomyces cerevisiae are the cis-acting sequences required for the initiation of chromosomal DNA replication. Comparisons of the DNA sequences of unrelated ARS elements from different regions of the genome have revealed no significant DNA sequence conservation. We have compared the sequences of seven pairs of homologous ARS elements from two Saccharomyces species, S. cerevisiae and S. carlsbergensis. In all but one case, the ARS308-ARS308carl pair, significant blocks of homology were detected. In the cases of ARS305, ARS307, and ARS309, previously identified functional elements were found to be conserved in their S. carlsbergensis homologs. Mutation of the conserved sequences in the S. carlsbergensis ARS elements revealed that the homologous sequences are required for function. These observations suggested that the sequences important for ARS function would be conserved in other ARS elements. Sequence comparisons aided in the identification of the essential matches to the ARS consensus sequence (ACS) of ARS304, ARS306, and ARS310carl, though not of ARS310.



Genetics ◽  
1999 ◽  
Vol 152 (3) ◽  
pp. 933-941 ◽  
Author(s):  
Chen Yang ◽  
James F Theis ◽  
Carol S Newlon

AbstractDNA replication origins, specified by ARS elements in Saccharomyces cerevisiae, play an essential role in the stable transmission of chromosomes. Little is known about the evolution of ARS elements. We have isolated and characterized ARS elements from a chromosome III recovered from an alloploid Carlsberg brewing yeast that has diverged from its S. cerevisiae homeologue. The positions of seven ARS elements identified in this S. carlsbergensis chromosome are conserved: they are located in intergenic regions flanked by open reading frames homologous to those that flank seven ARS elements of the S. cerevisiae chromosome. The S. carlsbergensis ARS elements were active both in S. cerevisiae and S. monacensis, which has been proposed to be the source of the diverged genome present in brewing yeast. Moreover, their function as chromosomal replication origins correlated strongly with the activity of S. cerevisiae ARS elements, demonstrating the conservation of ARS activity and replication origin function in these two species.



Gene ◽  
1998 ◽  
Vol 222 (1) ◽  
pp. 69-75 ◽  
Author(s):  
Christi Magrath ◽  
Kierstin Lund ◽  
Charles A Miller ◽  
Linda E Hyman
Keyword(s):  


Methods ◽  
1997 ◽  
Vol 13 (3) ◽  
pp. 221-233 ◽  
Author(s):  
Rosemary K. Clyne ◽  
Thomas J. Kelly


1997 ◽  
Vol 17 (4) ◽  
pp. 1995-2004 ◽  
Author(s):  
L Vernis ◽  
A Abbas ◽  
M Chasles ◽  
C M Gaillardin ◽  
C Brun ◽  
...  

Two DNA fragments displaying ARS activity on plasmids in the yeast Yarrowia lipolytica have previously been cloned and shown to harbor centromeric sequences (P. Fournier, A. Abbas, M. Chasles, B. Kudla, D. M. Ogrydziak, D. Yaver, J.-W. Xuan, A. Peito, A.-M. Ribet, C. Feynerol, F. He, and C. Gaillardin, Proc. Natl. Acad. Sci. USA 90:4912-4916, 1993; and P. Fournier, L. Guyaneux, M. Chasles, and C. Gaillardin, Yeast 7:25-36, 1991). We have used the integration properties of centromeric sequences to show that all Y. lipolytica ARS elements so far isolated are composed of both a replication origin and a centromere. The sequence and the distance between the origin and centromere do not seem to play a critical role, and many origins can function in association with one given centromere. A centromeric plasmid can therefore be used to clone putative chromosomal origins coming from several genomic locations, which confer the replicative property on the plasmid. The DNA sequences responsible for initiation in plasmids are short (several hundred base pairs) stretches which map close to or at replication initiation sites in the chromosome. Their chromosomal deletion abolishes initiation, but changing their chromosomal environment does not.



Sign in / Sign up

Export Citation Format

Share Document